Commit
·
b4ed1b6
1
Parent(s):
3700573
Update README.md
Browse files
README.md
CHANGED
@@ -22,6 +22,18 @@ Paper: [How Much Knowledge Can You Pack
|
|
22 |
Into the Parameters of a Language Model?](https://arxiv.org/abs/1910.10683.pdf)
|
23 |
|
24 |
Authors: *Adam Roberts, Colin Raffel, Noam Shazeer*
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
25 |
## Usage
|
26 |
|
27 |
The model can be used as follows for **closed book question answering**:
|
@@ -29,15 +41,13 @@ The model can be used as follows for **closed book question answering**:
|
|
29 |
```python
|
30 |
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer
|
31 |
|
32 |
-
t5_qa_model = AutoModelForSeq2SeqLM.from_pretrained("google/t5-
|
33 |
-
t5_tok = AutoTokenizer.from_pretrained("google/t5-
|
34 |
|
35 |
input_ids = t5_tok("When was Franklin D. Roosevelt born?", return_tensors="pt").input_ids
|
36 |
gen_output = t5_qa_model.generate(input_ids)[0]
|
37 |
|
38 |
print(t5_tok.decode(gen_output, skip_special_tokens=True))
|
39 |
-
|
40 |
-
# should give "December 26, 1892" => close, but not correct.
|
41 |
```
|
42 |
|
43 |
## Abstract
|
|
|
22 |
Into the Parameters of a Language Model?](https://arxiv.org/abs/1910.10683.pdf)
|
23 |
|
24 |
Authors: *Adam Roberts, Colin Raffel, Noam Shazeer*
|
25 |
+
|
26 |
+
## Results on Natural Questions - Open Test
|
27 |
+
|
28 |
+
|Id | link | Exact Match |
|
29 |
+
|---|---|---|
|
30 |
+
|T5-small|https://huggingface.co/google/t5-small-ssm-nq|25.5|
|
31 |
+
|T5-large|https://huggingface.co/google/t5-large-ssm-nq|30.4|
|
32 |
+
|**T5-xl**|**https://huggingface.co/google/t5-xl-ssm-nq**|**35.6**|
|
33 |
+
|T5-xxl|https://huggingface.co/google/t5-xxl-ssm-nq|37.9|
|
34 |
+
|T5-3b|https://huggingface.co/google/t5-3b-ssm-nq|33.2|
|
35 |
+
|T5-11b|https://huggingface.co/google/t5-11b-ssm-nq|36.6|
|
36 |
+
|
37 |
## Usage
|
38 |
|
39 |
The model can be used as follows for **closed book question answering**:
|
|
|
41 |
```python
|
42 |
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer
|
43 |
|
44 |
+
t5_qa_model = AutoModelForSeq2SeqLM.from_pretrained("google/t5-large-ssm-nq")
|
45 |
+
t5_tok = AutoTokenizer.from_pretrained("google/t5-large-ssm-nq")
|
46 |
|
47 |
input_ids = t5_tok("When was Franklin D. Roosevelt born?", return_tensors="pt").input_ids
|
48 |
gen_output = t5_qa_model.generate(input_ids)[0]
|
49 |
|
50 |
print(t5_tok.decode(gen_output, skip_special_tokens=True))
|
|
|
|
|
51 |
```
|
52 |
|
53 |
## Abstract
|