gospacedev commited on
Commit
b2c6f03
·
verified ·
1 Parent(s): c9a10a8

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +21 -149
README.md CHANGED
@@ -6,163 +6,35 @@ pipeline_tag: image-to-text
6
 
7
  # Blip Image Captioning Base BF16
8
 
9
- This model is a bfloat16 quantized version of the [Salesforce/blip-image-captioning-base](https://huggingface.co/Salesforce/blip-image-captioning-base), an image-to-text model.
10
-
11
- ## Model Details
12
-
13
- ### Model Description
14
-
15
- <!-- Provide a longer summary of what this model is. -->
16
-
17
- - **Developed by:** Grantley Cullar
18
- - **Funded by [optional]:** [More Information Needed]
19
- - **Shared by [optional]:** [More Information Needed]
20
- - **Model type:** Image-to-Text
21
- - **Language(s) (NLP):** English
22
- - **License:** MIT License
23
-
24
- ### Model Sources [optional]
25
-
26
- <!-- Provide the basic links for the model. -->
27
-
28
- - **Repository:** [More Information Needed]
29
- - **Paper [optional]:** [More Information Needed]
30
- - **Demo [optional]:** [More Information Needed]
31
-
32
- ## Uses
33
-
34
- You can use this model for conditional and un-conditional image captioning
35
-
36
- ### Direct Use
37
-
38
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
39
-
40
- [More Information Needed]
41
-
42
- ### Downstream Use [optional]
43
-
44
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
45
-
46
- [More Information Needed]
47
-
48
- ### Out-of-Scope Use
49
-
50
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
51
-
52
- [More Information Needed]
53
-
54
- ## Bias, Risks, and Limitations
55
-
56
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
57
-
58
- [More Information Needed]
59
-
60
- ### Recommendations
61
-
62
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
63
-
64
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
65
 
66
  ## How to Get Started with the Model
67
 
68
  Use the code below to get started with the model.
69
 
70
- [More Information Needed]
71
-
72
- ## Evaluation
73
-
74
- <!-- This section describes the evaluation protocols and provides the results. -->
75
-
76
- ### Testing Data, Factors & Metrics
77
-
78
- #### Testing Data
79
-
80
- <!-- This should link to a Dataset Card if possible. -->
81
-
82
- [More Information Needed]
83
-
84
- #### Factors
85
-
86
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
87
-
88
- [More Information Needed]
89
 
90
- #### Metrics
 
91
 
92
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
 
93
 
94
- [More Information Needed]
 
 
 
95
 
96
- ### Results
 
97
 
98
- [More Information Needed]
99
-
100
- #### Summary
101
-
102
-
103
-
104
- ## Model Examination [optional]
105
-
106
- <!-- Relevant interpretability work for the model goes here -->
107
-
108
- [More Information Needed]
109
-
110
- ## Environmental Impact
111
-
112
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
113
-
114
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
115
-
116
- - **Hardware Type:** [More Information Needed]
117
- - **Hours used:** [More Information Needed]
118
- - **Cloud Provider:** [More Information Needed]
119
- - **Compute Region:** [More Information Needed]
120
- - **Carbon Emitted:** [More Information Needed]
121
-
122
- ## Technical Specifications [optional]
123
-
124
- ### Model Architecture and Objective
125
-
126
- [More Information Needed]
127
-
128
- ### Compute Infrastructure
129
-
130
- [More Information Needed]
131
-
132
- #### Hardware
133
-
134
- [More Information Needed]
135
-
136
- #### Software
137
-
138
- [More Information Needed]
139
-
140
- ## Citation [optional]
141
-
142
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
143
-
144
- **BibTeX:**
145
-
146
- [More Information Needed]
147
-
148
- **APA:**
149
-
150
- [More Information Needed]
151
-
152
- ## Glossary [optional]
153
-
154
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
155
-
156
- [More Information Needed]
157
-
158
- ## More Information [optional]
159
-
160
- [More Information Needed]
161
-
162
- ## Model Card Authors [optional]
163
-
164
- [More Information Needed]
165
-
166
- ## Model Card Contact
167
 
168
- [More Information Needed]
 
 
 
 
6
 
7
  # Blip Image Captioning Base BF16
8
 
9
+ This model is a quantized version of the [Salesforce/blip-image-captioning-base](https://huggingface.co/Salesforce/blip-image-captioning-base), an image-to-text model.
10
+ From its original size of 989 MBs -> 494 MBs by quantizing the percision of float32 to bfloat 16, reducing the model's memory size by 50 percent.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
11
 
12
  ## How to Get Started with the Model
13
 
14
  Use the code below to get started with the model.
15
 
16
+ ```python
17
+ from transformers import BlipForConditionalGeneration, BlipProcessor
18
+ import requests
19
+ from PIL import Image
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
20
 
21
+ model = BlipForConditionalGeneration.from_pretrained("gospacedev/blip-image-captioning-base-bf16")
22
+ processor = BlipProcessor.from_pretrained("gospacedev/blip-image-captioning-base-bf16")
23
 
24
+ # Load sample image
25
+ image = Image.open(requests.get(img_url, stream=True).raw).convert('RGB')
26
 
27
+ # Generate output
28
+ inputs = processor(image, return_tensors="pt")
29
+ output = model.generate(**inputs)
30
+ result = processor.decode(out[0], skip_special_tokens=True)
31
 
32
+ print(results)
33
+ ```
34
 
35
+ ## Model Details
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
36
 
37
+ - **Developed by:** Grantley Cullar
38
+ - **Model type:** Image-to-Text
39
+ - **Language(s) (NLP):** English
40
+ - **License:** MIT License