ONNX
English
jina-embeddings-v2-small-en-off-topic / inference_safetensors.py
Shing Yee
feat: add files
ba6803f unverified
"""
inference_safetensors.py
Defines the architecture of the fine-tuned embedding model used for Off-Topic classification.
"""
import json
import torch
import sys
import torch.nn as nn
from huggingface_hub import hf_hub_download
from safetensors.torch import load_file
from transformers import AutoTokenizer, AutoModel
# Adapter for embeddings
class Adapter(nn.Module):
def __init__(self, hidden_size):
super(Adapter, self).__init__()
self.down_project = nn.Linear(hidden_size, hidden_size // 2)
self.activation = nn.ReLU()
self.up_project = nn.Linear(hidden_size // 2, hidden_size)
def forward(self, x):
down = self.down_project(x)
activated = self.activation(down)
up = self.up_project(activated)
return up + x # Residual connection
# Pool by attention score
class AttentionPooling(nn.Module):
def __init__(self, hidden_size):
super(AttentionPooling, self).__init__()
self.attention_weights = nn.Parameter(torch.randn(hidden_size))
def forward(self, hidden_states):
# hidden_states: [seq_len, batch_size, hidden_size]
scores = torch.matmul(hidden_states, self.attention_weights)
attention_weights = torch.softmax(scores, dim=0)
weighted_sum = torch.sum(attention_weights.unsqueeze(-1) * hidden_states, dim=0)
return weighted_sum
# Custom bi-encoder model with MLP layers for interaction
class CrossEncoderWithSharedBase(nn.Module):
def __init__(self, base_model, num_labels=2, num_heads=8):
super(CrossEncoderWithSharedBase, self).__init__()
# Shared pre-trained model
self.shared_encoder = base_model
hidden_size = self.shared_encoder.config.hidden_size
# Sentence-specific adapters
self.adapter1 = Adapter(hidden_size)
self.adapter2 = Adapter(hidden_size)
# Cross-attention layers
self.cross_attention_1_to_2 = nn.MultiheadAttention(hidden_size, num_heads)
self.cross_attention_2_to_1 = nn.MultiheadAttention(hidden_size, num_heads)
# Attention pooling layers
self.attn_pooling_1_to_2 = AttentionPooling(hidden_size)
self.attn_pooling_2_to_1 = AttentionPooling(hidden_size)
# Projection layer with non-linearity
self.projection_layer = nn.Sequential(
nn.Linear(hidden_size * 2, hidden_size),
nn.ReLU()
)
# Classifier with three hidden layers
self.classifier = nn.Sequential(
nn.Linear(hidden_size, hidden_size // 2),
nn.ReLU(),
nn.Dropout(0.1),
nn.Linear(hidden_size // 2, hidden_size // 4),
nn.ReLU(),
nn.Dropout(0.1),
nn.Linear(hidden_size // 4, num_labels)
)
def forward(self, input_ids1, attention_mask1, input_ids2, attention_mask2):
# Encode sentences
outputs1 = self.shared_encoder(input_ids1, attention_mask=attention_mask1)
outputs2 = self.shared_encoder(input_ids2, attention_mask=attention_mask2)
# Apply sentence-specific adapters
embeds1 = self.adapter1(outputs1.last_hidden_state)
embeds2 = self.adapter2(outputs2.last_hidden_state)
# Transpose for attention layers
embeds1 = embeds1.transpose(0, 1)
embeds2 = embeds2.transpose(0, 1)
# Cross-attention
cross_attn_1_to_2, _ = self.cross_attention_1_to_2(embeds1, embeds2, embeds2)
cross_attn_2_to_1, _ = self.cross_attention_2_to_1(embeds2, embeds1, embeds1)
# Attention pooling
pooled_1_to_2 = self.attn_pooling_1_to_2(cross_attn_1_to_2)
pooled_2_to_1 = self.attn_pooling_2_to_1(cross_attn_2_to_1)
# Concatenate and project
combined = torch.cat((pooled_1_to_2, pooled_2_to_1), dim=1)
projected = self.projection_layer(combined)
# Classification
logits = self.classifier(projected)
return logits
# Load configuration file
repo_path = "govtech/jina-embeddings-v2-small-en-off-topic"
config_path = hf_hub_download(repo_id=repo_path, filename="config.json")
config_path = "config.json"
with open(config_path, 'r') as f:
config = json.load(f)
def predict(sentence1, sentence2):
"""
Predicts the label for a pair of sentences using a fine-tuned model with SafeTensors weights.
Args:
- sentence1 (str): The first input sentence.
- sentence2 (str): The second input sentence.
Returns:
tuple:
- predicted_label (int): The predicted label (e.g., 0 or 1).
- probabilities (numpy.ndarray): The probabilities for each class.
"""
# Load model configuration
model_name = config['classifier']['embedding']['model_name']
max_length = config['classifier']['embedding']['max_length']
model_weights_fp = config['classifier']['embedding']['model_weights_fp']
# Load tokenizer and base model
device = torch.device("cuda") if torch.cuda.is_available() else "cpu"
tokenizer = AutoTokenizer.from_pretrained(model_name)
base_model = AutoModel.from_pretrained(model_name)
model = CrossEncoderWithSharedBase(base_model, num_labels=2)
# Load weights into the model
weights = load_file(model_weights_fp)
model.load_state_dict(weights)
model.to(device)
model.eval()
# Get inputs
inputs1 = tokenizer(sentence1, return_tensors="pt", truncation=True, padding="max_length", max_length=max_length)
inputs2 = tokenizer(sentence2, return_tensors="pt", truncation=True, padding="max_length", max_length=max_length)
input_ids1 = inputs1['input_ids'].to(device)
attention_mask1 = inputs1['attention_mask'].to(device)
input_ids2 = inputs2['input_ids'].to(device)
attention_mask2 = inputs2['attention_mask'].to(device)
# Get outputs
with torch.no_grad():
outputs = model(input_ids1=input_ids1, attention_mask1=attention_mask1,
input_ids2=input_ids2, attention_mask2=attention_mask2)
probabilities = torch.softmax(outputs, dim=1)
predicted_label = torch.argmax(probabilities, dim=1).item()
return predicted_label, probabilities.cpu().numpy()
if __name__ == "__main__":
# Load data
input_data = sys.argv[1]
sentence_pairs = json.loads(input_data)
# Validate input data format
if not all(isinstance(pair[0], str) and isinstance(pair[1], str) for pair in sentence_pairs):
raise ValueError("Each pair must contain two strings.")
for idx, (sentence1, sentence2) in enumerate(sentence_pairs):
# Generate prediction and scores
predicted_label, probabilities = predict(sentence1, sentence2)
# Print the results
print(f"Pair {idx + 1}:")
print(f" Sentence 1: {sentence1}")
print(f" Sentence 2: {sentence2}")
print(f" Predicted Label: {predicted_label}")
print(f" Probabilities: {probabilities}")
print('-' * 50)