feat: upload model weights
Browse files- config.json +49 -0
- lionguard2.py +195 -0
- model.safetensors +3 -0
config.json
ADDED
@@ -0,0 +1,49 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"architectures": [
|
3 |
+
"LionGuard2Model"
|
4 |
+
],
|
5 |
+
"categories": {
|
6 |
+
"all_other_misconduct": [
|
7 |
+
"all_other_misconduct_l1",
|
8 |
+
"all_other_misconduct_l2"
|
9 |
+
],
|
10 |
+
"binary": [
|
11 |
+
"binary"
|
12 |
+
],
|
13 |
+
"hateful": [
|
14 |
+
"hateful_l1",
|
15 |
+
"hateful_l2"
|
16 |
+
],
|
17 |
+
"insults": [
|
18 |
+
"insults"
|
19 |
+
],
|
20 |
+
"physical_violence": [
|
21 |
+
"physical_violence"
|
22 |
+
],
|
23 |
+
"self_harm": [
|
24 |
+
"self_harm_l1",
|
25 |
+
"self_harm_l2"
|
26 |
+
],
|
27 |
+
"sexual": [
|
28 |
+
"sexual_l1",
|
29 |
+
"sexual_l2"
|
30 |
+
]
|
31 |
+
},
|
32 |
+
"category_order": [
|
33 |
+
"binary",
|
34 |
+
"hateful",
|
35 |
+
"insults",
|
36 |
+
"sexual",
|
37 |
+
"physical_violence",
|
38 |
+
"self_harm",
|
39 |
+
"all_other_misconduct"
|
40 |
+
],
|
41 |
+
"input_dim": 3072,
|
42 |
+
"model_type": "lionguard2",
|
43 |
+
"torch_dtype": "float32",
|
44 |
+
"transformers_version": "4.50.3",
|
45 |
+
"auto_map": {
|
46 |
+
"AutoConfig": "lionguard2.LionGuard2Config",
|
47 |
+
"AutoModel": "lionguard2.LionGuard2Model"
|
48 |
+
}
|
49 |
+
}
|
lionguard2.py
ADDED
@@ -0,0 +1,195 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
lionguard2.py
|
3 |
+
"""
|
4 |
+
|
5 |
+
import torch
|
6 |
+
import torch.nn as nn
|
7 |
+
from transformers import PretrainedConfig, PreTrainedModel
|
8 |
+
|
9 |
+
INPUT_DIMENSION = 3072 # length of OpenAI embeddings
|
10 |
+
|
11 |
+
CATEGORIES = {
|
12 |
+
"binary": ["binary"],
|
13 |
+
"hateful": ["hateful_l1", "hateful_l2"],
|
14 |
+
"insults": ["insults"],
|
15 |
+
"sexual": [
|
16 |
+
"sexual_l1",
|
17 |
+
"sexual_l2",
|
18 |
+
],
|
19 |
+
"physical_violence": ["physical_violence"],
|
20 |
+
"self_harm": ["self_harm_l1", "self_harm_l2"],
|
21 |
+
"all_other_misconduct": [
|
22 |
+
"all_other_misconduct_l1",
|
23 |
+
"all_other_misconduct_l2",
|
24 |
+
],
|
25 |
+
}
|
26 |
+
|
27 |
+
CATEGORY_ORDER = [
|
28 |
+
"binary",
|
29 |
+
"hateful",
|
30 |
+
"insults",
|
31 |
+
"sexual",
|
32 |
+
"physical_violence",
|
33 |
+
"self_harm",
|
34 |
+
"all_other_misconduct",
|
35 |
+
]
|
36 |
+
|
37 |
+
|
38 |
+
class LionGuard2Config(PretrainedConfig):
|
39 |
+
model_type = "lionguard2"
|
40 |
+
|
41 |
+
def __init__(
|
42 |
+
self,
|
43 |
+
input_dim=INPUT_DIMENSION,
|
44 |
+
categories=CATEGORIES,
|
45 |
+
category_order=CATEGORY_ORDER,
|
46 |
+
**kwargs,
|
47 |
+
):
|
48 |
+
super().__init__(**kwargs)
|
49 |
+
self.input_dim = input_dim
|
50 |
+
self.categories = categories
|
51 |
+
self.category_order = category_order
|
52 |
+
|
53 |
+
|
54 |
+
class LionGuard2Model(PreTrainedModel):
|
55 |
+
config_class = LionGuard2Config
|
56 |
+
|
57 |
+
def __init__(self, config: LionGuard2Config):
|
58 |
+
"""
|
59 |
+
LionGuard2 is a localised content moderation model that flags whether text violates the following categories:
|
60 |
+
|
61 |
+
1. `hateful`: Text that discriminates, criticizes, insults, denounces, or dehumanizes a person or group on the basis of a protected identity.
|
62 |
+
|
63 |
+
There are two sub-categories for the `hateful` category:
|
64 |
+
a. `level_1_discriminatory`: Text that contains derogatory or generalized negative statements targeting a protected group.
|
65 |
+
b. `level_2_hate_speech`: Text that explicitly calls for harm or violence against a protected group; or language praising or justifying violence against them.
|
66 |
+
|
67 |
+
2. `insults`: Text that insults demeans, humiliates, mocks, or belittles a person or group **without** referencing a legally protected trait.
|
68 |
+
For example, this includes personal attacks on attributes such as someone’s appearance, intellect, behavior, or other non-protected characteristics.
|
69 |
+
|
70 |
+
3. `sexual`: Text that depicts or indicates sexual interest, activity, or arousal, using direct or indirect references to body parts, sexual acts, or physical traits.
|
71 |
+
This includes sexual content that may be inappropriate for certain audiences.
|
72 |
+
|
73 |
+
There are two sub-categories for the `sexual` category:
|
74 |
+
a. `level_1_not_appropriate_for_minors`: Text that contains mild-to-moderate sexual content that is generally adult-oriented or potentially unsuitable for those under 16.
|
75 |
+
May include matter-of-fact discussions about sex, sexuality, or sexual preferences.
|
76 |
+
b. `level_2_not_appropriate_for_all_ages`: Text that contains content aimed at adults and considered explicit, graphic, or otherwise inappropriate for a broad audience.
|
77 |
+
May include explicit descriptions of sexual acts, detailed sexual fantasies, or highly sexualized content.
|
78 |
+
|
79 |
+
4. `physical_violence`: Text that includes glorification of violence or threats to inflict physical harm or injury on a person, group, or entity.
|
80 |
+
|
81 |
+
5. `self_harm`: Text that promotes, suggests, or expresses intent to self-harm or commit suicide.
|
82 |
+
|
83 |
+
There are two sub-categories for the `self_harm` category:
|
84 |
+
a. `level_1_self_harm_intent`: Text that expresses suicidal thoughts or self-harm intention; or content encouraging someone to self-harm.
|
85 |
+
b. `level_2_self_harm_action`: Text that describes or indicates ongoing or imminent self-harm behavior.
|
86 |
+
|
87 |
+
6. `all_other_misconduct`: This is a catch-all category for any other unsafe text that does not fit into the other categories.
|
88 |
+
It includes text that seeks or provides information about engaging in misconduct, wrongdoing, or criminal activity, or that threatens to harm,
|
89 |
+
defraud, or exploit others. This includes facilitating illegal acts (under Singapore law) or other forms of socially harmful activity.
|
90 |
+
|
91 |
+
There are two sub-categories for the `all_other_misconduct` category:
|
92 |
+
a. `level_1_not_socially_accepted`: Text that advocates or instructs on unethical/immoral activities that may not necessarily be illegal but are socially condemned.
|
93 |
+
b. `level_2_illegal_activities`: Text that seeks or provides instructions to carry out clearly illegal activities or serious wrongdoing; includes credible threats of severe harm.
|
94 |
+
|
95 |
+
Lastly, there is an additional `binary` category (#7) which flags whether the text is unsafe in general.
|
96 |
+
|
97 |
+
The model takes in as input text, after it has been encoded with OpenAI's `text-embedding-3-small` model.
|
98 |
+
|
99 |
+
The model outputs the probabilities of each category being true.
|
100 |
+
|
101 |
+
================================
|
102 |
+
|
103 |
+
Args:
|
104 |
+
input_dim: The dimension of the input embeddings. This defaults to 3072, which is the dimension of the embeddings from OpenAI's `text-embedding-3-small` model. This should not be changed.
|
105 |
+
label_names: The names of the labels. This defaults to the keys of the CATEGORIES dictionary. This should not be changed.
|
106 |
+
categories: The categories of the labels. This defaults to the CATEGORIES dictionary. This should not be changed.
|
107 |
+
|
108 |
+
Returns:
|
109 |
+
A LionGuard2 model.
|
110 |
+
"""
|
111 |
+
super().__init__(config)
|
112 |
+
self.input_dim = config.input_dim
|
113 |
+
self.categories = config.categories
|
114 |
+
self.category_order = config.category_order
|
115 |
+
self.n_outputs = len(self.category_order)
|
116 |
+
|
117 |
+
# Shared layers
|
118 |
+
self.shared_layers = nn.Sequential(
|
119 |
+
nn.Linear(self.input_dim, 256),
|
120 |
+
nn.ReLU(),
|
121 |
+
nn.Dropout(0.2),
|
122 |
+
nn.Linear(256, 128),
|
123 |
+
nn.ReLU(),
|
124 |
+
nn.Dropout(0.2),
|
125 |
+
)
|
126 |
+
|
127 |
+
# Output heads for each label
|
128 |
+
self.output_heads = nn.ModuleList(
|
129 |
+
[
|
130 |
+
nn.Sequential(
|
131 |
+
nn.Linear(128, 32),
|
132 |
+
nn.ReLU(),
|
133 |
+
nn.Linear(32, 2), # 2 thresholds for ordinal classification
|
134 |
+
nn.Sigmoid(),
|
135 |
+
)
|
136 |
+
for _ in range(self.n_outputs)
|
137 |
+
]
|
138 |
+
)
|
139 |
+
|
140 |
+
def forward(self, x):
|
141 |
+
# Pass through shared layers
|
142 |
+
h = self.shared_layers(x)
|
143 |
+
# Pass through each output head
|
144 |
+
return [head(h) for head in self.output_heads]
|
145 |
+
|
146 |
+
def predict(self, embeddings):
|
147 |
+
"""
|
148 |
+
Predict the probabilities of each label being true.
|
149 |
+
|
150 |
+
Args:
|
151 |
+
embeddings: A numpy array of embeddings (N * INPUT_DIMENSION)
|
152 |
+
|
153 |
+
Returns:
|
154 |
+
A dictionary of probabilities.
|
155 |
+
"""
|
156 |
+
# Convert input to PyTorch tensor if not already
|
157 |
+
if not isinstance(embeddings, torch.Tensor):
|
158 |
+
x = torch.tensor(embeddings, dtype=torch.float32)
|
159 |
+
else:
|
160 |
+
x = embeddings
|
161 |
+
|
162 |
+
# Pass through model
|
163 |
+
with torch.no_grad():
|
164 |
+
outputs = self.forward(x)
|
165 |
+
|
166 |
+
# Stack outputs into a single tensor
|
167 |
+
raw_predictions = torch.stack(outputs) # SIZE:
|
168 |
+
|
169 |
+
# Extract and format probabilities from raw predictions
|
170 |
+
output = {}
|
171 |
+
for i, main_cat in enumerate(self.category_order):
|
172 |
+
sub_categories = self.categories[main_cat]
|
173 |
+
for j, sub_cat in enumerate(sub_categories):
|
174 |
+
# j=0 uses P(y>0)
|
175 |
+
# j=1 uses P(y>1) if L2 category exists
|
176 |
+
output[sub_cat] = raw_predictions[i, :, j]
|
177 |
+
|
178 |
+
# Post processing step:
|
179 |
+
# If L2 category exists, and P(L2) > P(L1),
|
180 |
+
# Set both P(L1) and P(L2) to their average to maintain ordinal consistency
|
181 |
+
if len(sub_categories) > 1:
|
182 |
+
l1 = output[sub_categories[0]]
|
183 |
+
l2 = output[sub_categories[1]]
|
184 |
+
|
185 |
+
# Update probabilities on samples where P(L2) > P(L1)
|
186 |
+
mask = l2 > l1
|
187 |
+
mean_prob = (l1 + l2) / 2
|
188 |
+
l1[mask] = mean_prob[mask]
|
189 |
+
l2[mask] = mean_prob[mask]
|
190 |
+
output[sub_categories[0]] = l1
|
191 |
+
output[sub_categories[1]] = l2
|
192 |
+
|
193 |
+
for key, value in output.items():
|
194 |
+
output[key] = value.numpy().tolist()
|
195 |
+
return output
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:20665c1cde68b57c34444accc4f0fca5a3f58b3483d6bad2d6c6911e431afac9
|
3 |
+
size 3398496
|