ONNX
English
gabrielchua commited on
Commit
d9707d3
·
verified ·
1 Parent(s): 0e5e516

Update README to add further results

Browse files
Files changed (1) hide show
  1. README.md +25 -6
README.md CHANGED
@@ -1,8 +1,19 @@
1
- ---
2
- license: other
3
- license_name: govtech-singapore
4
- license_link: LICENSE
5
- ---
 
 
 
 
 
 
 
 
 
 
 
6
 
7
  # Off-Topic Classification Model
8
 
@@ -16,10 +27,18 @@ This model leverages a fine-tuned **Cross Encoder STSB Roberta Base** to perform
16
 
17
  ## Performance
18
 
 
 
19
  | Approach | Model | ROC-AUC | F1 | Precision | Recall |
20
  |---------------------------------------|--------------------------------|---------|------|-----------|--------|
21
- | Fine-tuned cross-encoder classifier | stsb-roberta-base | 0.99 | 0.99 | 0.99 | 0.99 |
 
22
  | Pre-trained cross-encoder | stsb-roberta-base | 0.73 | 0.68 | 0.53 | 0.93 |
 
 
 
 
 
23
 
24
  ## Usage
25
  1. Clone this repository and install the required dependencies:
 
1
+ ---
2
+ license: other
3
+ license_name: govtech-singapore
4
+ license_link: LICENSE
5
+ datasets:
6
+ - gabrielchua/off-topic
7
+ language:
8
+ - en
9
+ metrics:
10
+ - roc_auc
11
+ - f1
12
+ - precision
13
+ - recall
14
+ base_model:
15
+ - cross-encoder/stsb-roberta-base
16
+ ---
17
 
18
  # Off-Topic Classification Model
19
 
 
27
 
28
  ## Performance
29
 
30
+ We evaluated our fine-tuned models on synthetic data modelling system and user prompt pairs reflecting real world enterprise use cases of LLMs. The dataset is available [here](https://huggingface.co/datasets/gabrielchua/off-topic).
31
+
32
  | Approach | Model | ROC-AUC | F1 | Precision | Recall |
33
  |---------------------------------------|--------------------------------|---------|------|-----------|--------|
34
+ | 👉 [Fine-tuned bi-encoder classifier](https://huggingface.co/govtech/jina-embeddings-v2-small-en-off-topic) | jina-embeddings-v2-small-en | 0.99 | 0.97 | 0.99 | 0.95 |
35
+ | [Fine-tuned cross-encoder classifier](https://huggingface.co/govtech/stsb-roberta-base-off-topic) | stsb-roberta-base | 0.99 | 0.99 | 0.99 | 0.99 |
36
  | Pre-trained cross-encoder | stsb-roberta-base | 0.73 | 0.68 | 0.53 | 0.93 |
37
+ | Prompt Engineering | GPT 4o (2024-08-06) | - | 0.95 | 0.94 | 0.97 |
38
+ | Prompt Engineering | GPT 4o Mini (2024-07-18) | - | 0.91 | 0.85 | 0.91 |
39
+ | Zero-shot Classification | GPT 4o Mini (2024-07-18) | 0.99 | 0.97 | 0.95 | 0.99 |
40
+
41
+ Further evaluation results on additional synthetic and external datasets (e.g.,`JailbreakBench`, `HarmBench`, `TrustLLM`) are available in our [technical report](https://arxiv.org/abs/2411.12946).
42
 
43
  ## Usage
44
  1. Clone this repository and install the required dependencies: