--- library_name: transformers license: llama3 datasets: - gpjt/openassistant-guanaco-llama2-format base_model: - meta-llama/Meta-Llama-3-8B --- This is a fine-tune of [meta-llama/Meta-Llama-3-8B](https://huggingface.co/meta-llama/Meta-Llama-3-8B) on the [gpjt/openassistant-guanaco-llama2-format](https://huggingface.co/datasets/gpjt/openassistant-guanaco-llama2-format), which in turn is a version of [timdettmers/openassistant-guanaco](https://huggingface.co/datasets/timdettmers/openassistant-guanaco) adjusted to use my best guess at the Llama 2 prompt format (see the dataset card for more info). Sample code to use it: ```python import sys import time import torch from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline prompt_template = """ [INST] <> You are a helpful, respectful and honest assistant. Always answer as helpfully as possible, while being safe. Your answers should not include any harmful, unethical, racist, sexist, toxic, dangerous, or illegal content. Please ensure that your responses are socially unbiased and positive in nature. If a question does not make any sense, or is not factually coherent, explain why instead of answering something not correct. If you don't know the answer to a question, please don't share false information. <> {question} [/INST] {response} """ def ask_question(model, tokenizer, question): pipe = pipeline(task="text-generation", model=model, tokenizer=tokenizer, max_new_tokens=2048) prompt = prompt_template.format(question=question, response="") tokens_in = len(tokenizer(prompt)["input_ids"]) start = time.time() result = pipe(prompt) end = time.time() generated_text = result[0]['generated_text'] tokens_out = len(tokenizer(generated_text)["input_ids"]) print(generated_text) tokens_generated = tokens_out - tokens_in time_taken = end - start tokens_per_second = tokens_generated / time_taken print(f"{tokens_generated} tokens in {time_taken:.2f}s: {tokens_per_second:.2f} tokens/s)") def test_model(): model_name = "gpjt/Meta-Llama-3-8B-openassistant-guanaco-llama2-format" tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForCausalLM.from_pretrained(model_name, device_map="cuda", torch_dtype=torch.bfloat16) question = input("You: ") ask_question(model, tokenizer, question) if __name__ == "__main__": test_model() ```