|
from typing import Dict, List, Any |
|
from transformers import LayoutLMForTokenClassification, LayoutLMv2Processor |
|
import torch |
|
from subprocess import run |
|
import pytesseract |
|
|
|
|
|
run("apt install -y tesseract-ocr", shell=True, check=True) |
|
|
|
|
|
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") |
|
|
|
|
|
class EndpointHandler: |
|
def __call__(self, data: Dict[str, bytes]) -> Dict[str, List[Any]]: |
|
""" |
|
Args: |
|
data (:obj:): |
|
includes the deserialized image file as PIL.Image |
|
""" |
|
|
|
image = data.pop("inputs", data) |
|
|
|
result = pytesseract.image_to_string(image) |
|
return {"predictions": result} |
|
|