--- license: apache-2.0 library_name: peft tags: - generated_from_trainer metrics: - accuracy base_model: mistralai/Mistral-7B-Instruct-v0.1 model-index: - name: mistral_instruct_classify10k results: [] --- # mistral_instruct_classify10k This model is a fine-tuned version of [mistralai/Mistral-7B-Instruct-v0.1](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.1) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.4669 - F1 Micro: 0.5541 - F1 Macro: 0.4757 - Accuracy: 0.8606 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 6 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: constant - lr_scheduler_warmup_steps: 0.03 - num_epochs: 6 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 Micro | F1 Macro | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:|:--------:|:--------:| | 0.5713 | 1.0 | 1345 | 0.5121 | 0.5518 | 0.4780 | 0.8361 | | 2.1107 | 2.0 | 2690 | 1.0088 | 0.5039 | 0.4158 | 0.7536 | | 0.7897 | 3.0 | 4035 | 0.8093 | 0.4448 | 0.3756 | 0.6377 | | 0.2022 | 4.0 | 5380 | 0.3706 | 0.5619 | 0.4837 | 0.8751 | | 0.4403 | 5.0 | 6725 | 0.4996 | 0.5552 | 0.4811 | 0.8406 | | 0.3214 | 6.0 | 8070 | 0.4669 | 0.5541 | 0.4757 | 0.8606 | ### Framework versions - PEFT 0.8.2 - Transformers 4.37.2 - Pytorch 2.2.0+cu121 - Datasets 2.17.0 - Tokenizers 0.15.2