File size: 12,209 Bytes
8388fd7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
---
library_name: transformers
license: apache-2.0
base_model: facebook/dinov2-large
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: Aina-large-2024_10_23-batch-size32_freeze_monolabel
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# Aina-large-2024_10_23-batch-size32_freeze_monolabel

This model is a fine-tuned version of [facebook/dinov2-large](https://huggingface.co/facebook/dinov2-large) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6806
- F1 Micro: 0.7614
- F1 Macro: 0.4269
- Accuracy: 0.7614
- Learning Rate: 0.0000

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.001
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 150
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step   | Validation Loss | F1 Micro | F1 Macro | Accuracy | Rate   |
|:-------------:|:-----:|:------:|:---------------:|:--------:|:--------:|:--------:|:------:|
| 0.9658        | 1.0   | 3312   | 0.8468          | 0.7179   | 0.2217   | 0.7179   | 0.001  |
| 0.9257        | 2.0   | 6624   | 0.8172          | 0.7247   | 0.3043   | 0.7247   | 0.001  |
| 0.9202        | 3.0   | 9936   | 0.8048          | 0.7260   | 0.3035   | 0.7260   | 0.001  |
| 0.8905        | 4.0   | 13248  | 0.7947          | 0.7285   | 0.3109   | 0.7285   | 0.001  |
| 0.907         | 5.0   | 16560  | 0.7822          | 0.7309   | 0.3046   | 0.7309   | 0.001  |
| 0.8925        | 6.0   | 19872  | 0.7838          | 0.7345   | 0.3159   | 0.7345   | 0.001  |
| 0.8922        | 7.0   | 23184  | 0.7931          | 0.7357   | 0.3244   | 0.7357   | 0.001  |
| 0.883         | 8.0   | 26496  | 0.7688          | 0.7354   | 0.3241   | 0.7354   | 0.001  |
| 0.8697        | 9.0   | 29808  | 0.7635          | 0.7377   | 0.3242   | 0.7377   | 0.001  |
| 0.8782        | 10.0  | 33120  | 0.7689          | 0.7373   | 0.3327   | 0.7373   | 0.001  |
| 0.8869        | 11.0  | 36432  | 0.7676          | 0.7350   | 0.3337   | 0.7350   | 0.001  |
| 0.8791        | 12.0  | 39744  | 0.7640          | 0.7369   | 0.3409   | 0.7369   | 0.001  |
| 0.9017        | 13.0  | 43056  | 0.7674          | 0.7337   | 0.3400   | 0.7337   | 0.001  |
| 0.8753        | 14.0  | 46368  | 0.7586          | 0.7381   | 0.3271   | 0.7381   | 0.001  |
| 0.872         | 15.0  | 49680  | 0.7658          | 0.7373   | 0.3229   | 0.7373   | 0.001  |
| 0.8672        | 16.0  | 52992  | 0.8086          | 0.7389   | 0.3353   | 0.7389   | 0.001  |
| 0.8678        | 17.0  | 56304  | 0.7629          | 0.7390   | 0.3359   | 0.7390   | 0.001  |
| 0.8875        | 18.0  | 59616  | 0.7615          | 0.7365   | 0.3353   | 0.7365   | 0.001  |
| 0.8645        | 19.0  | 62928  | 0.7682          | 0.7387   | 0.3450   | 0.7387   | 0.001  |
| 0.881         | 20.0  | 66240  | 0.7559          | 0.7406   | 0.3411   | 0.7406   | 0.001  |
| 0.8927        | 21.0  | 69552  | 0.7755          | 0.7349   | 0.3408   | 0.7349   | 0.001  |
| 0.8704        | 22.0  | 72864  | 0.7674          | 0.7344   | 0.3233   | 0.7344   | 0.001  |
| 0.8711        | 23.0  | 76176  | 0.7695          | 0.7340   | 0.3139   | 0.7340   | 0.001  |
| 0.8722        | 24.0  | 79488  | 0.7538          | 0.7400   | 0.3338   | 0.7400   | 0.001  |
| 0.884         | 25.0  | 82800  | 0.7643          | 0.7352   | 0.3480   | 0.7352   | 0.001  |
| 0.8661        | 26.0  | 86112  | 0.7568          | 0.7388   | 0.3272   | 0.7388   | 0.001  |
| 0.8847        | 27.0  | 89424  | 0.7665          | 0.7371   | 0.3427   | 0.7371   | 0.001  |
| 0.8749        | 28.0  | 92736  | 0.7592          | 0.7385   | 0.3129   | 0.7385   | 0.001  |
| 0.8782        | 29.0  | 96048  | 0.7544          | 0.7402   | 0.3420   | 0.7402   | 0.001  |
| 0.882         | 30.0  | 99360  | 0.7549          | 0.7412   | 0.3503   | 0.7412   | 0.001  |
| 0.8481        | 31.0  | 102672 | 0.7332          | 0.7457   | 0.3602   | 0.7457   | 0.0001 |
| 0.8329        | 32.0  | 105984 | 0.7296          | 0.7456   | 0.3696   | 0.7456   | 0.0001 |
| 0.817         | 33.0  | 109296 | 0.7270          | 0.7467   | 0.3749   | 0.7467   | 0.0001 |
| 0.8173        | 34.0  | 112608 | 0.7234          | 0.7471   | 0.3683   | 0.7471   | 0.0001 |
| 0.8221        | 35.0  | 115920 | 0.7187          | 0.7492   | 0.3795   | 0.7492   | 0.0001 |
| 0.8085        | 36.0  | 119232 | 0.7215          | 0.7484   | 0.3758   | 0.7484   | 0.0001 |
| 0.8113        | 37.0  | 122544 | 0.7180          | 0.7505   | 0.3767   | 0.7505   | 0.0001 |
| 0.802         | 38.0  | 125856 | 0.7137          | 0.7502   | 0.3861   | 0.7502   | 0.0001 |
| 0.8042        | 39.0  | 129168 | 0.7125          | 0.7514   | 0.3868   | 0.7514   | 0.0001 |
| 0.7976        | 40.0  | 132480 | 0.7126          | 0.7499   | 0.3844   | 0.7499   | 0.0001 |
| 0.7963        | 41.0  | 135792 | 0.7112          | 0.7516   | 0.3905   | 0.7516   | 0.0001 |
| 0.8054        | 42.0  | 139104 | 0.7116          | 0.7511   | 0.3926   | 0.7511   | 0.0001 |
| 0.8119        | 43.0  | 142416 | 0.7098          | 0.7516   | 0.3901   | 0.7516   | 0.0001 |
| 0.8009        | 44.0  | 145728 | 0.7102          | 0.7507   | 0.3897   | 0.7507   | 0.0001 |
| 0.7929        | 45.0  | 149040 | 0.7100          | 0.7517   | 0.3883   | 0.7517   | 0.0001 |
| 0.8079        | 46.0  | 152352 | 0.7068          | 0.7510   | 0.3912   | 0.7510   | 0.0001 |
| 0.8053        | 47.0  | 155664 | 0.7074          | 0.7510   | 0.3888   | 0.7510   | 0.0001 |
| 0.7965        | 48.0  | 158976 | 0.7095          | 0.7508   | 0.3890   | 0.7508   | 0.0001 |
| 0.8043        | 49.0  | 162288 | 0.7090          | 0.7509   | 0.3935   | 0.7509   | 0.0001 |
| 0.7861        | 50.0  | 165600 | 0.7080          | 0.7512   | 0.4026   | 0.7512   | 0.0001 |
| 0.7917        | 51.0  | 168912 | 0.7062          | 0.7514   | 0.3942   | 0.7514   | 0.0001 |
| 0.7909        | 52.0  | 172224 | 0.7049          | 0.7526   | 0.3971   | 0.7526   | 0.0001 |
| 0.7886        | 53.0  | 175536 | 0.7044          | 0.7526   | 0.4017   | 0.7526   | 0.0001 |
| 0.7834        | 54.0  | 178848 | 0.7028          | 0.7524   | 0.3992   | 0.7524   | 0.0001 |
| 0.7991        | 55.0  | 182160 | 0.7029          | 0.7527   | 0.3966   | 0.7527   | 0.0001 |
| 0.7875        | 56.0  | 185472 | 0.7026          | 0.7533   | 0.4011   | 0.7533   | 0.0001 |
| 0.7868        | 57.0  | 188784 | 0.7029          | 0.7525   | 0.4056   | 0.7525   | 0.0001 |
| 0.7837        | 58.0  | 192096 | 0.7021          | 0.7536   | 0.4020   | 0.7536   | 0.0001 |
| 0.7834        | 59.0  | 195408 | 0.7011          | 0.7534   | 0.4049   | 0.7534   | 0.0001 |
| 0.7893        | 60.0  | 198720 | 0.7019          | 0.7530   | 0.4029   | 0.7530   | 0.0001 |
| 0.7824        | 61.0  | 202032 | 0.7023          | 0.7519   | 0.3995   | 0.7519   | 0.0001 |
| 0.789         | 62.0  | 205344 | 0.7038          | 0.7525   | 0.4041   | 0.7525   | 0.0001 |
| 0.7778        | 63.0  | 208656 | 0.7003          | 0.7535   | 0.4038   | 0.7535   | 0.0001 |
| 0.7719        | 64.0  | 211968 | 0.6997          | 0.7526   | 0.3982   | 0.7526   | 0.0001 |
| 0.7909        | 65.0  | 215280 | 0.7074          | 0.7515   | 0.3997   | 0.7515   | 0.0001 |
| 0.7854        | 66.0  | 218592 | 0.7018          | 0.7526   | 0.3940   | 0.7526   | 0.0001 |
| 0.7746        | 67.0  | 221904 | 0.7023          | 0.7543   | 0.4000   | 0.7543   | 0.0001 |
| 0.7905        | 68.0  | 225216 | 0.6975          | 0.7541   | 0.4063   | 0.7541   | 0.0001 |
| 0.7824        | 69.0  | 228528 | 0.6994          | 0.7538   | 0.4072   | 0.7538   | 0.0001 |
| 0.7795        | 70.0  | 231840 | 0.6969          | 0.7557   | 0.4094   | 0.7557   | 0.0001 |
| 0.7763        | 71.0  | 235152 | 0.6969          | 0.7564   | 0.4085   | 0.7564   | 0.0001 |
| 0.7723        | 72.0  | 238464 | 0.6987          | 0.7531   | 0.4090   | 0.7531   | 0.0001 |
| 0.7914        | 73.0  | 241776 | 0.6945          | 0.7556   | 0.4203   | 0.7556   | 0.0001 |
| 0.7658        | 74.0  | 245088 | 0.6951          | 0.7544   | 0.4117   | 0.7544   | 0.0001 |
| 0.7803        | 75.0  | 248400 | 0.6989          | 0.7548   | 0.4104   | 0.7548   | 0.0001 |
| 0.7772        | 76.0  | 251712 | 0.6997          | 0.7536   | 0.4037   | 0.7536   | 0.0001 |
| 0.7813        | 77.0  | 255024 | 0.6986          | 0.7535   | 0.4092   | 0.7535   | 0.0001 |
| 0.7938        | 78.0  | 258336 | 0.6982          | 0.7530   | 0.4084   | 0.7530   | 0.0001 |
| 0.776         | 79.0  | 261648 | 0.6958          | 0.7545   | 0.4055   | 0.7545   | 0.0001 |
| 0.7613        | 80.0  | 264960 | 0.6934          | 0.7548   | 0.4061   | 0.7548   | 1e-05  |
| 0.7647        | 81.0  | 268272 | 0.6922          | 0.7560   | 0.4108   | 0.7560   | 1e-05  |
| 0.7842        | 82.0  | 271584 | 0.6933          | 0.7543   | 0.4069   | 0.7543   | 1e-05  |
| 0.7689        | 83.0  | 274896 | 0.6953          | 0.7535   | 0.4068   | 0.7535   | 1e-05  |
| 0.7674        | 84.0  | 278208 | 0.6913          | 0.7570   | 0.4140   | 0.7570   | 1e-05  |
| 0.7607        | 85.0  | 281520 | 0.6911          | 0.7564   | 0.4117   | 0.7564   | 1e-05  |
| 0.7744        | 86.0  | 284832 | 0.6916          | 0.7563   | 0.4128   | 0.7563   | 1e-05  |
| 0.7639        | 87.0  | 288144 | 0.6929          | 0.7550   | 0.4089   | 0.7550   | 1e-05  |
| 0.7515        | 88.0  | 291456 | 0.6904          | 0.7565   | 0.4210   | 0.7565   | 1e-05  |
| 0.7529        | 89.0  | 294768 | 0.6912          | 0.7554   | 0.4082   | 0.7554   | 1e-05  |
| 0.7575        | 90.0  | 298080 | 0.6931          | 0.7557   | 0.4102   | 0.7557   | 1e-05  |
| 0.7715        | 91.0  | 301392 | 0.6912          | 0.7555   | 0.4130   | 0.7555   | 1e-05  |
| 0.7512        | 92.0  | 304704 | 0.6950          | 0.7534   | 0.4113   | 0.7534   | 1e-05  |
| 0.7514        | 93.0  | 308016 | 0.6945          | 0.7539   | 0.4075   | 0.7539   | 1e-05  |
| 0.7529        | 94.0  | 311328 | 0.6904          | 0.7564   | 0.4140   | 0.7564   | 1e-05  |
| 0.7731        | 95.0  | 314640 | 0.6919          | 0.7555   | 0.4121   | 0.7555   | 0.0000 |
| 0.7561        | 96.0  | 317952 | 0.6894          | 0.7563   | 0.4092   | 0.7563   | 0.0000 |
| 0.7702        | 97.0  | 321264 | 0.6900          | 0.7565   | 0.4131   | 0.7565   | 0.0000 |
| 0.7506        | 98.0  | 324576 | 0.6900          | 0.7566   | 0.4136   | 0.7566   | 0.0000 |
| 0.7512        | 99.0  | 327888 | 0.6909          | 0.7564   | 0.4168   | 0.7564   | 0.0000 |
| 0.7694        | 100.0 | 331200 | 0.6912          | 0.7562   | 0.4155   | 0.7562   | 0.0000 |
| 0.7487        | 101.0 | 334512 | 0.6904          | 0.7550   | 0.4158   | 0.7550   | 0.0000 |
| 0.7543        | 102.0 | 337824 | 0.6890          | 0.7570   | 0.4175   | 0.7570   | 0.0000 |
| 0.7743        | 103.0 | 341136 | 0.6923          | 0.7546   | 0.4137   | 0.7546   | 0.0000 |
| 0.757         | 104.0 | 344448 | 0.6912          | 0.7560   | 0.4183   | 0.7560   | 0.0000 |
| 0.7631        | 105.0 | 347760 | 0.6899          | 0.7561   | 0.4088   | 0.7561   | 0.0000 |
| 0.755         | 106.0 | 351072 | 0.6912          | 0.7556   | 0.4102   | 0.7556   | 0.0000 |
| 0.7545        | 107.0 | 354384 | 0.6898          | 0.7573   | 0.4107   | 0.7573   | 0.0000 |
| 0.7533        | 108.0 | 357696 | 0.6910          | 0.7538   | 0.4114   | 0.7538   | 0.0000 |
| 0.7725        | 109.0 | 361008 | 0.6899          | 0.7565   | 0.4134   | 0.7565   | 0.0000 |
| 0.7544        | 110.0 | 364320 | 0.6922          | 0.7555   | 0.4110   | 0.7555   | 0.0000 |
| 0.758         | 111.0 | 367632 | 0.6901          | 0.7559   | 0.4141   | 0.7559   | 0.0000 |
| 0.7674        | 112.0 | 370944 | 0.6903          | 0.7560   | 0.4127   | 0.7560   | 0.0000 |


### Framework versions

- Transformers 4.44.2
- Pytorch 2.4.1+cu121
- Datasets 3.0.0
- Tokenizers 0.19.1