--- license: apache-2.0 base_model: facebook/dinov2-large tags: - generated_from_trainer metrics: - accuracy model-index: - name: DinoVdeau-large-2024_10_25-prova_batch-size8_freeze_monolabel results: [] --- # DinoVdeau-large-2024_10_25-prova_batch-size8_freeze_monolabel This model is a fine-tuned version of [facebook/dinov2-large](https://huggingface.co/facebook/dinov2-large) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.8116 - F1 Micro: 0.5 - F1 Macro: 0.2126 - Accuracy: 0.5 - Learning Rate: 0.001 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 Micro | F1 Macro | Accuracy | Rate | |:-------------:|:-----:|:----:|:---------------:|:--------:|:--------:|:--------:|:-----:| | No log | 1.0 | 7 | 2.7061 | 0.5 | 0.2790 | 0.5 | 0.001 | ### Framework versions - Transformers 4.41.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.2 - Tokenizers 0.19.1