File size: 18,859 Bytes
b5ab656
b8a04e3
b5ab656
 
 
b8a04e3
b5ab656
 
b8a04e3
b5ab656
b8a04e3
 
 
 
 
b5ab656
b8a04e3
 
 
 
 
 
 
b5ab656
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b8a04e3
b5ab656
b8a04e3
b5ab656
 
 
 
b8a04e3
b5ab656
b8a04e3
b5ab656
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b8a04e3
b5ab656
b8a04e3
b5ab656
b8a04e3
b5ab656
b8a04e3
 
b5ab656
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297

---
language:
- eng
license: cc0-1.0
tags:
- multilabel-image-classification
- multilabel
- generated_from_trainer
base_model: Kamoulox-large-2024_10_31-batch-size64_freeze_monolabel
model-index:
- name: Kamoulox-large-2024_10_31-batch-size64_freeze_monolabel
  results: []
---

DinoVdeau is a fine-tuned version of [Kamoulox-large-2024_10_31-batch-size64_freeze_monolabel](https://huggingface.co/Kamoulox-large-2024_10_31-batch-size64_freeze_monolabel). It achieves the following results on the test set:


- Loss: 0.0494
- F1 Micro: 0.7640
- F1 Macro: 0.3461
- Accuracy: 0.7130

| Class | F1 per class |
|----------|-------|
| ALGAE | 0.7961 |
| Acr | 0.7462 |
| Acr_Br | 0.3797 |
| Anem | 0.6767 |
| CCA | 0.2710 |
| Ech | 0.3610 |
| Fts | 0.3889 |
| Gal | 0.4667 |
| Gon | 0.2222 |
| Mtp | 0.5521 |
| P | 0.3615 |
| Poc | 0.4367 |
| Por | 0.5018 |
| R | 0.7153 |
| RDC | 0.1781 |
| S | 0.8252 |
| SG | 0.8504 |
| Sarg | 0.6303 |
| Ser | 0.3252 |
| Slt | 0.4188 |
| Sp | 0.4198 |
| Turf | 0.6045 |
| UNK | 0.3763 |


---

# Model description
DinoVdeau is a model built on top of Kamoulox-large-2024_10_31-batch-size64_freeze_monolabel model for underwater multilabel image classification.The classification head is a combination of linear, ReLU, batch normalization, and dropout layers.

The source code for training the model can be found in this [Git repository](https://github.com/SeatizenDOI/DinoVdeau).

- **Developed by:** [lombardata](https://huggingface.co/lombardata), credits to [César Leblanc](https://huggingface.co/CesarLeblanc) and [Victor Illien](https://huggingface.co/groderg)

---

# Intended uses & limitations
You can use the raw model for classify diverse marine species, encompassing coral morphotypes classes taken from the Global Coral Reef Monitoring Network (GCRMN), habitats classes and seagrass species.

---

# Training and evaluation data
Details on the  number of images for each class are given in the following table:
| Class   |   train |   test |   val |   Total |
|:--------|--------:|-------:|------:|--------:|
| ALGAE   |   36874 |  12292 | 12292 |   61458 |
| Acr     |    5358 |   1787 |  1786 |    8931 |
| Acr_Br  |     123 |     42 |    42 |     207 |
| Anem    |     235 |     79 |    79 |     393 |
| CCA     |     918 |    306 |   306 |    1530 |
| Ech     |     618 |    206 |   206 |    1030 |
| Fts     |     168 |     57 |    57 |     282 |
| Gal     |     465 |    155 |   155 |     775 |
| Gon     |     158 |     53 |    53 |     264 |
| Mtp     |    2370 |    791 |   790 |    3951 |
| P       |    2658 |    887 |   886 |    4431 |
| Poc     |     549 |    184 |   183 |     916 |
| Por     |    1059 |    354 |   353 |    1766 |
| R       |   31437 |  10480 | 10479 |   52396 |
| RDC     |     930 |    310 |   310 |    1550 |
| S       |   57624 |  19209 | 19209 |   96042 |
| SG      |   25539 |   8513 |  8513 |   42565 |
| Sarg    |     285 |     96 |    96 |     477 |
| Ser     |     261 |     87 |    87 |     435 |
| Slt     |    2730 |    911 |   911 |    4552 |
| Sp      |     132 |     44 |    44 |     220 |
| Turf    |    1395 |    466 |   466 |    2327 |
| UNK     |     292 |     98 |    98 |     488 |

---

# Training procedure

## Training hyperparameters

The following hyperparameters were used during training:

- **Number of Epochs**: 150.0
- **Learning Rate**: 0.001
- **Train Batch Size**: 64
- **Eval Batch Size**: 64
- **Optimizer**: Adam
- **LR Scheduler Type**: ReduceLROnPlateau with a patience of 5 epochs and a factor of 0.1
- **Freeze Encoder**: Yes
- **Data Augmentation**: Yes


## Data Augmentation
Data were augmented using the following transformations :

Train Transforms
- **PreProcess**: No additional parameters
- **Resize**: probability=1.00
- **RandomHorizontalFlip**: probability=0.25
- **RandomVerticalFlip**: probability=0.25
- **ColorJiggle**: probability=0.25
- **RandomPerspective**: probability=0.25
- **Normalize**: probability=1.00

Val Transforms
- **PreProcess**: No additional parameters
- **Resize**: probability=1.00
- **Normalize**: probability=1.00



## Training results
Epoch | Validation Loss | Accuracy | F1 Macro | F1 Micro | Learning Rate
--- | --- | --- | --- | --- | ---
0 | N/A | N/A | N/A | N/A | 0.001
1 | 0.8028618097305298 | 0.7326527412414418 | 0.7326527412414418 | 0.2723318326456157 | 0.001
2 | 0.8038854002952576 | 0.7288723192975732 | 0.7288723192975732 | 0.290650504066453 | 0.001
3 | 0.7705450654029846 | 0.7408581732025574 | 0.7408581732025574 | 0.326985383349658 | 0.001
4 | 0.7623223066329956 | 0.7417118168673019 | 0.7417118168673019 | 0.310238611675961 | 0.001
5 | 0.7626621127128601 | 0.7383495061061653 | 0.7383495061061653 | 0.3107947240093857 | 0.001
6 | 0.7451828122138977 | 0.7447257016428285 | 0.7447257016428285 | 0.34331624846537584 | 0.001
7 | 0.7458378672599792 | 0.7467291510600861 | 0.7467291510600861 | 0.3283260141196405 | 0.001
8 | 0.7398682832717896 | 0.7458929286946221 | 0.7458929286946221 | 0.3352756381207012 | 0.001
9 | 0.7424591779708862 | 0.7455270814097316 | 0.7455270814097316 | 0.329402464136349 | 0.001
10 | 0.7364382147789001 | 0.7474782669291475 | 0.7474782669291475 | 0.31573051576045374 | 0.001
11 | 0.7368418574333191 | 0.7465375167680005 | 0.7465375167680005 | 0.34419509138343996 | 0.001
12 | 0.7442134022712708 | 0.7428093587219735 | 0.7428093587219735 | 0.3321199292959056 | 0.001
13 | 0.7384127378463745 | 0.7479312207104406 | 0.7479312207104406 | 0.35283143267744377 | 0.001
14 | 0.7464041113853455 | 0.7463633037751956 | 0.7463633037751956 | 0.33455884660313173 | 0.001
15 | 0.7394037842750549 | 0.7446734377449871 | 0.7446734377449871 | 0.34277495445998946 | 0.001
16 | 0.7397111058235168 | 0.7478789568125991 | 0.7478789568125991 | 0.3506456767847629 | 0.001
17 | 0.7110718488693237 | 0.7554398007003362 | 0.7554398007003362 | 0.3747287292827094 | 0.0001
18 | 0.7041681408882141 | 0.7567463981463738 | 0.7567463981463738 | 0.3792648315920964 | 0.0001
19 | 0.7004917860031128 | 0.7582446298844968 | 0.7582446298844968 | 0.38576725361345504 | 0.0001
20 | 0.6942671537399292 | 0.7602829219003153 | 0.7602829219003153 | 0.39339544323315423 | 0.0001
21 | 0.6919424533843994 | 0.7592899078413268 | 0.7592899078413268 | 0.3942710537489151 | 0.0001
22 | 0.6903713941574097 | 0.7606313478859253 | 0.7606313478859253 | 0.3925331634038099 | 0.0001
23 | 0.6874070167541504 | 0.7607010330830474 | 0.7607010330830474 | 0.39534246826429575 | 0.0001
24 | 0.6864963173866272 | 0.7612236720614624 | 0.7612236720614624 | 0.3933203620961568 | 0.0001
25 | 0.684335470199585 | 0.7614153063535478 | 0.7614153063535478 | 0.402343965759826 | 0.0001
26 | 0.6830293536186218 | 0.7629309593909513 | 0.7629309593909513 | 0.4055175650763901 | 0.0001
27 | 0.6827249526977539 | 0.7630703297851954 | 0.7630703297851954 | 0.40742696523740624 | 0.0001
28 | 0.6805527210235596 | 0.7629309593909513 | 0.7629309593909513 | 0.413578373717749 | 0.0001
29 | 0.6796479225158691 | 0.7625825334053413 | 0.7625825334053413 | 0.4138447052049864 | 0.0001
30 | 0.6774595379829407 | 0.7635929687636104 | 0.7635929687636104 | 0.41283784117218203 | 0.0001
31 | 0.677918553352356 | 0.7643769272312328 | 0.7643769272312328 | 0.4100283180344899 | 0.0001
32 | 0.6754601001739502 | 0.7641504503405864 | 0.7641504503405864 | 0.41093585032897456 | 0.0001
33 | 0.6749601364135742 | 0.7645162976254769 | 0.7645162976254769 | 0.4185852176848548 | 0.0001
34 | 0.6746455430984497 | 0.7650040940053309 | 0.7650040940053309 | 0.41458520697205553 | 0.0001
35 | 0.6740487813949585 | 0.7641852929391474 | 0.7641852929391474 | 0.42549626405712787 | 0.0001
36 | 0.6740365624427795 | 0.7646905106182819 | 0.7646905106182819 | 0.42042185334833837 | 0.0001
37 | 0.6731483936309814 | 0.7641678716398669 | 0.7641678716398669 | 0.4194338951085209 | 0.0001
38 | 0.671998918056488 | 0.7648821449103674 | 0.7648821449103674 | 0.42433192329853336 | 0.0001
39 | 0.6694707870483398 | 0.7659274228671974 | 0.7659274228671974 | 0.42040362773805245 | 0.0001
40 | 0.6693674325942993 | 0.7665023257434539 | 0.7665023257434539 | 0.42052839725843943 | 0.0001
41 | 0.6682748198509216 | 0.7658228950715145 | 0.7658228950715145 | 0.4176095837463332 | 0.0001
42 | 0.6682831645011902 | 0.7665371683420149 | 0.7665371683420149 | 0.4307432846853069 | 0.0001
43 | 0.6695142984390259 | 0.7664152192470515 | 0.7664152192470515 | 0.42637174689527435 | 0.0001
44 | 0.669391393661499 | 0.765840316370795 | 0.765840316370795 | 0.42609728385101026 | 0.0001
45 | 0.6695447564125061 | 0.7649518301074895 | 0.7649518301074895 | 0.4307801257532618 | 0.0001
46 | 0.6653340458869934 | 0.7673908120067595 | 0.7673908120067595 | 0.4362286100546047 | 0.0001
47 | 0.6659862995147705 | 0.7674430759046009 | 0.7674430759046009 | 0.43279477858934173 | 0.0001
48 | 0.665557861328125 | 0.7668855943276249 | 0.7668855943276249 | 0.43077383038275147 | 0.0001
49 | 0.6672787666320801 | 0.7666242748384174 | 0.7666242748384174 | 0.4241681801855841 | 0.0001
50 | 0.6661437749862671 | 0.7662584275535269 | 0.7662584275535269 | 0.43151276516162357 | 0.0001
51 | 0.6638755798339844 | 0.7667288026341005 | 0.7667288026341005 | 0.4307690989303114 | 0.0001
52 | 0.6654694676399231 | 0.7679134509851745 | 0.7679134509851745 | 0.4427799679621408 | 0.0001
53 | 0.6643231511116028 | 0.767234020313235 | 0.767234020313235 | 0.4341825403324277 | 0.0001
54 | 0.667382001876831 | 0.7663455340499294 | 0.7663455340499294 | 0.4459616186399035 | 0.0001
55 | 0.6627440452575684 | 0.7684709325621505 | 0.7684709325621505 | 0.4389385481332223 | 0.0001
56 | 0.6627209186553955 | 0.767094649918991 | 0.767094649918991 | 0.43857797557707 | 0.0001
57 | 0.6640397310256958 | 0.7669204369261859 | 0.7669204369261859 | 0.43847119749006624 | 0.0001
58 | 0.6627684235572815 | 0.7672862842110765 | 0.7672862842110765 | 0.43760916892251167 | 0.0001
59 | 0.6614954471588135 | 0.7679134509851745 | 0.7679134509851745 | 0.439932052501894 | 0.0001
60 | 0.6633245944976807 | 0.766990122123308 | 0.766990122123308 | 0.44188579219640917 | 0.0001
61 | 0.6611309051513672 | 0.7685754603578335 | 0.7685754603578335 | 0.4370683373238057 | 0.0001
62 | 0.660831093788147 | 0.7684360899635895 | 0.7684360899635895 | 0.45352172583851785 | 0.0001
63 | 0.6621896028518677 | 0.767791501890211 | 0.767791501890211 | 0.44611945476580944 | 0.0001
64 | 0.6610415577888489 | 0.767547603700284 | 0.767547603700284 | 0.4439334258360575 | 0.0001
65 | 0.6589834690093994 | 0.7680354000801379 | 0.7680354000801379 | 0.434573899819693 | 0.0001
66 | 0.6599727272987366 | 0.76845351126287 | 0.76845351126287 | 0.4397010901020239 | 0.0001
67 | 0.6572328209877014 | 0.769045835438407 | 0.769045835438407 | 0.44838573955584105 | 0.0001
68 | 0.658860445022583 | 0.7686799881535165 | 0.7686799881535165 | 0.4442341389313245 | 0.0001
69 | 0.659292995929718 | 0.7688542011463215 | 0.7688542011463215 | 0.43926108990057783 | 0.0001
70 | 0.658970832824707 | 0.7679134509851745 | 0.7679134509851745 | 0.4357439201261406 | 0.0001
71 | 0.6567061543464661 | 0.768244455671504 | 0.768244455671504 | 0.4432082950234043 | 0.0001
72 | 0.65887850522995 | 0.7681225065765405 | 0.7681225065765405 | 0.4369170898714745 | 0.0001
73 | 0.6611541509628296 | 0.7675998675981255 | 0.7675998675981255 | 0.4436833314710758 | 0.0001
74 | 0.6570971012115479 | 0.768488353861431 | 0.768488353861431 | 0.44906341810873124 | 0.0001
75 | 0.6557245254516602 | 0.768174770474382 | 0.768174770474382 | 0.44439364748025234 | 0.0001
76 | 0.658838152885437 | 0.7683489834671869 | 0.7683489834671869 | 0.4478607285233603 | 0.0001
77 | 0.6572225093841553 | 0.7686277242556749 | 0.7686277242556749 | 0.44887316801028765 | 0.0001
78 | 0.6562930941581726 | 0.768767094649919 | 0.768767094649919 | 0.4439839848601264 | 0.0001
79 | 0.6564787030220032 | 0.76810508527726 | 0.76810508527726 | 0.4379298766193662 | 0.0001
80 | 0.661143958568573 | 0.768383826065748 | 0.768383826065748 | 0.4460529321244195 | 0.0001
81 | 0.660437285900116 | 0.768941307642724 | 0.768941307642724 | 0.44750591322776384 | 0.0001
82 | 0.6531779766082764 | 0.7705614884758105 | 0.7705614884758105 | 0.4526720456188751 | 1e-05
83 | 0.6532895565032959 | 0.77019564119092 | 0.77019564119092 | 0.4489367718812771 | 1e-05
84 | 0.6505005359649658 | 0.7705266458772495 | 0.7705266458772495 | 0.45139096558153424 | 1e-05
85 | 0.6501905918121338 | 0.7708053866657375 | 0.7708053866657375 | 0.4565625671001629 | 1e-05
86 | 0.6507149338722229 | 0.7707182801693351 | 0.7707182801693351 | 0.4559124472677571 | 1e-05
87 | 0.6484472751617432 | 0.770927335760701 | 0.770927335760701 | 0.45838476700319497 | 1e-05
88 | 0.6496042013168335 | 0.77054406717653 | 0.77054406717653 | 0.4569340367642959 | 1e-05
89 | 0.6486304402351379 | 0.7713977108412745 | 0.7713977108412745 | 0.45601319436503734 | 1e-05
90 | 0.6490767598152161 | 0.7711886552499085 | 0.7711886552499085 | 0.45742417795749246 | 1e-05
91 | 0.6481940746307373 | 0.7704221180815666 | 0.7704221180815666 | 0.45182909085509243 | 1e-05
92 | 0.6477252244949341 | 0.7715545025347991 | 0.7715545025347991 | 0.45503456574154166 | 1e-05
93 | 0.6489835381507874 | 0.771206076549189 | 0.771206076549189 | 0.4518083431267937 | 1e-05
94 | 0.6485304832458496 | 0.770753122767896 | 0.770753122767896 | 0.45105746851856937 | 1e-05
95 | 0.647895336151123 | 0.771659030330482 | 0.771659030330482 | 0.45671492126995916 | 1e-05
96 | 0.6472702622413635 | 0.7715022386369575 | 0.7715022386369575 | 0.4596959338122155 | 1e-05
97 | 0.6460831165313721 | 0.7713977108412745 | 0.7713977108412745 | 0.4625401473178366 | 1e-05
98 | 0.6463102698326111 | 0.7722165119074581 | 0.7722165119074581 | 0.45892155771298887 | 1e-05
99 | 0.646852433681488 | 0.77089249316214 | 0.77089249316214 | 0.4549241891767946 | 1e-05
100 | 0.6456441879272461 | 0.7723384610024215 | 0.7723384610024215 | 0.45970146016594643 | 1e-05
101 | 0.6469387412071228 | 0.7717461368268845 | 0.7717461368268845 | 0.4573593202819609 | 1e-05
102 | 0.646738588809967 | 0.7717809794254455 | 0.7717809794254455 | 0.4593480600391769 | 1e-05
103 | 0.6467755436897278 | 0.7723036184038605 | 0.7723036184038605 | 0.4576617106244536 | 1e-05
104 | 0.6456966400146484 | 0.7725475165937876 | 0.7725475165937876 | 0.4578893476938316 | 1e-05
105 | 0.6455578804016113 | 0.7719377711189701 | 0.7719377711189701 | 0.45556962818046953 | 1e-05
106 | 0.6444206237792969 | 0.7723384610024215 | 0.7723384610024215 | 0.4644160307431161 | 1e-05
107 | 0.26552170515060425 | 0.04797825821849794 | 0.4910938804941607 | 0.360721302464235 | 1e-05
108 | 0.1419014185667038 | 0.44983536872179924 | 0.6693680656054029 | 0.22462065038139475 | 1e-05
109 | 0.07755623757839203 | 0.6714691381683245 | 0.7449736568518617 | 0.2136927959803109 | 1e-05
110 | 0.05802077427506447 | 0.6837163115625163 | 0.7489470111853911 | 0.26414762709864326 | 1e-05
111 | 0.053473543375730515 | 0.6935245030574381 | 0.7547299175391458 | 0.331603552491686 | 1e-05
112 | 0.05167479068040848 | 0.6998135920976987 | 0.7585280588776449 | 0.3483537603081725 | 1e-05
113 | 0.05106380954384804 | 0.7042734447135067 | 0.7611001027447527 | 0.3378893620669972 | 1e-05
114 | 0.05065497010946274 | 0.7053535652688978 | 0.7622047244094489 | 0.35703913789456687 | 1e-05
115 | 0.05039990693330765 | 0.7117820247034023 | 0.7647240545893983 | 0.36428903036337407 | 1e-05
116 | 0.05015714839100838 | 0.7101966864688769 | 0.7647289615591668 | 0.3622993891059384 | 1e-05
117 | 0.050175271928310394 | 0.712914409156635 | 0.7657223847509677 | 0.36544151863175506 | 1e-05
118 | 0.050468478351831436 | 0.7141687427048309 | 0.7654782537680462 | 0.3524192831401073 | 1e-05
119 | 0.049900032579898834 | 0.7127053535652689 | 0.7658673932788375 | 0.34416444697858145 | 1e-05
120 | 0.049903545528650284 | 0.7130886221494399 | 0.7657258505633957 | 0.35077501544817247 | 1e-05
121 | 0.04957958310842514 | 0.7140816362084285 | 0.7665756914119359 | 0.3627670615797559 | 1e-05
122 | 0.04973344877362251 | 0.7163812477134545 | 0.7672263726699065 | 0.35293584502475456 | 1e-05
123 | 0.04949206858873367 | 0.7153533910559049 | 0.7661930650098223 | 0.36741171960145996 | 1e-05
124 | 0.049613192677497864 | 0.7160676643264055 | 0.7673595994775795 | 0.36413807211107735 | 1e-05
125 | 0.04959910735487938 | 0.7124440340760614 | 0.7658070643240676 | 0.3509397162428964 | 1e-05
126 | 0.0494619682431221 | 0.7152662845595025 | 0.7660751240774316 | 0.37424111866414195 | 1e-05
127 | 0.049399666488170624 | 0.7149178585738925 | 0.766314294299216 | 0.35735030768195364 | 1e-05
128 | 0.04938925430178642 | 0.714412640894758 | 0.7664776721721585 | 0.36010176970077795 | 1e-05
129 | 0.049368634819984436 | 0.717931743349419 | 0.7674323253122921 | 0.3641550142658243 | 1e-05
130 | 0.049409620463848114 | 0.717687845159492 | 0.7667705923765463 | 0.3602711408206009 | 1e-05
131 | 0.04939533770084381 | 0.718210484137907 | 0.7665082507046622 | 0.3664294602272974 | 1e-05
132 | 0.04943186417222023 | 0.717583317363809 | 0.7664564319910658 | 0.3651176446191739 | 1e-05
133 | 0.049288176000118256 | 0.714621696486124 | 0.7658437005098911 | 0.36115748131858555 | 1e-05
134 | 0.04927274212241173 | 0.7154753401508684 | 0.7659699195779215 | 0.3677607284274943 | 1e-05
135 | 0.04929700121283531 | 0.7189944426055295 | 0.7674080308866179 | 0.37226237632641596 | 1e-05
136 | 0.049187980592250824 | 0.7151094928659779 | 0.766711291239524 | 0.35969130867283144 | 1e-05
137 | 0.0491538941860199 | 0.7157889235379175 | 0.7664713487937058 | 0.3631043131303743 | 1e-05
138 | 0.04930136725306511 | 0.7178446368530165 | 0.7665450277813434 | 0.3687935119842292 | 1e-05
139 | 0.04927237331867218 | 0.7182279054371875 | 0.766155421092079 | 0.35626916649899915 | 1e-05
140 | 0.04918988421559334 | 0.7197958223724326 | 0.767376184687937 | 0.3699733355385332 | 1e-05
141 | 0.04920462518930435 | 0.716468354209857 | 0.7666041104041745 | 0.35072596287625124 | 1e-05
142 | 0.04919710010290146 | 0.7194473963868225 | 0.7669340748803981 | 0.36600085102264546 | 1e-05
143 | 0.04930509999394417 | 0.7168342014947475 | 0.765517685242224 | 0.3673237139632794 | 1e-05
144 | 0.0490318201482296 | 0.7171477848817965 | 0.7667940015206897 | 0.3554021435508309 | 1.0000000000000002e-06
145 | 0.04918621480464935 | 0.7201616696573231 | 0.7677822164123848 | 0.3711029550898432 | 1.0000000000000002e-06
146 | 0.04903709515929222 | 0.717130363582516 | 0.7665065530257804 | 0.368326447075977 | 1.0000000000000002e-06
147 | 0.049094948917627335 | 0.720823679029982 | 0.768544776459646 | 0.37476196073915324 | 1.0000000000000002e-06
148 | 0.04907181113958359 | 0.7167296736990645 | 0.7667018106807243 | 0.3649988602534311 | 1.0000000000000002e-06
149 | 0.04904184117913246 | 0.718210484137907 | 0.7671139893046166 | 0.3787860055208151 | 1.0000000000000002e-06
150 | 0.04912904277443886 | 0.7154404975523074 | 0.7667920374277589 | 0.3726446424747262 | 1.0000000000000002e-06


---

# Framework Versions

- **Transformers**: 4.44.2
- **Pytorch**: 2.4.1+cu121
- **Datasets**: 3.0.0
- **Tokenizers**: 0.19.1