Upload README.md
Browse files
README.md
CHANGED
@@ -1,92 +1,166 @@
|
|
|
|
1 |
---
|
2 |
-
|
3 |
-
|
4 |
-
|
5 |
tags:
|
|
|
|
|
6 |
- generated_from_trainer
|
7 |
-
|
8 |
-
- accuracy
|
9 |
model-index:
|
10 |
- name: Resneteau-50-2024_09_23-batch-size32_freeze
|
11 |
results: []
|
12 |
---
|
13 |
|
14 |
-
|
15 |
-
should probably proofread and complete it, then remove this comment. -->
|
16 |
|
17 |
-
# Resneteau-50-2024_09_23-batch-size32_freeze
|
18 |
-
|
19 |
-
This model is a fine-tuned version of [microsoft/resnet-50](https://huggingface.co/microsoft/resnet-50) on the None dataset.
|
20 |
-
It achieves the following results on the evaluation set:
|
21 |
- Loss: 0.1906
|
22 |
- F1 Micro: 0.6954
|
23 |
- F1 Macro: 0.4462
|
24 |
- Accuracy: 0.1827
|
25 |
-
- Learning Rate: 0.0001
|
26 |
|
27 |
-
|
|
|
|
|
|
|
28 |
|
29 |
-
|
30 |
|
31 |
-
|
32 |
|
33 |
-
|
|
|
|
|
|
|
|
|
|
|
34 |
|
35 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
36 |
|
37 |
-
|
38 |
|
39 |
-
|
40 |
|
41 |
-
|
42 |
|
43 |
The following hyperparameters were used during training:
|
44 |
-
|
45 |
-
-
|
46 |
-
-
|
47 |
-
-
|
48 |
-
-
|
49 |
-
-
|
50 |
-
-
|
51 |
-
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
| 0.
|
78 |
-
| 0.
|
79 |
-
| 0.
|
80 |
-
| 0.
|
81 |
-
| 0.
|
82 |
-
| 0.
|
83 |
-
| 0.
|
84 |
-
| 0.
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
---
|
3 |
+
language:
|
4 |
+
- eng
|
5 |
+
license: wtfpl
|
6 |
tags:
|
7 |
+
- multilabel-image-classification
|
8 |
+
- multilabel
|
9 |
- generated_from_trainer
|
10 |
+
base_model: microsoft/resnet-50
|
|
|
11 |
model-index:
|
12 |
- name: Resneteau-50-2024_09_23-batch-size32_freeze
|
13 |
results: []
|
14 |
---
|
15 |
|
16 |
+
Resneteau is a fine-tuned version of [microsoft/resnet-50](https://huggingface.co/microsoft/resnet-50). It achieves the following results on the test set:
|
|
|
17 |
|
|
|
|
|
|
|
|
|
18 |
- Loss: 0.1906
|
19 |
- F1 Micro: 0.6954
|
20 |
- F1 Macro: 0.4462
|
21 |
- Accuracy: 0.1827
|
|
|
22 |
|
23 |
+
---
|
24 |
+
|
25 |
+
# Model description
|
26 |
+
Resneteau is a model built on top of microsoft/resnet-50 model for underwater multilabel image classification.The classification head is a combination of linear, ReLU, batch normalization, and dropout layers.
|
27 |
|
28 |
+
The source code for training the model can be found in this [Git repository](https://github.com/SeatizenDOI/DinoVdeau).
|
29 |
|
30 |
+
- **Developed by:** [lombardata](https://huggingface.co/lombardata), credits to [César Leblanc](https://huggingface.co/CesarLeblanc) and [Victor Illien](https://huggingface.co/groderg)
|
31 |
|
32 |
+
---
|
33 |
+
|
34 |
+
# Intended uses & limitations
|
35 |
+
You can use the raw model for classify diverse marine species, encompassing coral morphotypes classes taken from the Global Coral Reef Monitoring Network (GCRMN), habitats classes and seagrass species.
|
36 |
+
|
37 |
+
---
|
38 |
|
39 |
+
# Training and evaluation data
|
40 |
+
Details on the number of images for each class are given in the following table:
|
41 |
+
| Class | train | val | test | Total |
|
42 |
+
|:-------------------------|--------:|------:|-------:|--------:|
|
43 |
+
| Acropore_branched | 1469 | 464 | 475 | 2408 |
|
44 |
+
| Acropore_digitised | 568 | 160 | 160 | 888 |
|
45 |
+
| Acropore_sub_massive | 150 | 50 | 43 | 243 |
|
46 |
+
| Acropore_tabular | 999 | 297 | 293 | 1589 |
|
47 |
+
| Algae_assembly | 2546 | 847 | 845 | 4238 |
|
48 |
+
| Algae_drawn_up | 367 | 126 | 127 | 620 |
|
49 |
+
| Algae_limestone | 1652 | 557 | 563 | 2772 |
|
50 |
+
| Algae_sodding | 3148 | 984 | 985 | 5117 |
|
51 |
+
| Atra/Leucospilota | 1084 | 348 | 360 | 1792 |
|
52 |
+
| Bleached_coral | 219 | 71 | 70 | 360 |
|
53 |
+
| Blurred | 191 | 67 | 62 | 320 |
|
54 |
+
| Dead_coral | 1979 | 642 | 643 | 3264 |
|
55 |
+
| Fish | 2018 | 656 | 647 | 3321 |
|
56 |
+
| Homo_sapiens | 161 | 62 | 59 | 282 |
|
57 |
+
| Human_object | 157 | 58 | 55 | 270 |
|
58 |
+
| Living_coral | 406 | 154 | 141 | 701 |
|
59 |
+
| Millepore | 385 | 127 | 125 | 637 |
|
60 |
+
| No_acropore_encrusting | 441 | 130 | 154 | 725 |
|
61 |
+
| No_acropore_foliaceous | 204 | 36 | 46 | 286 |
|
62 |
+
| No_acropore_massive | 1031 | 336 | 338 | 1705 |
|
63 |
+
| No_acropore_solitary | 202 | 53 | 48 | 303 |
|
64 |
+
| No_acropore_sub_massive | 1401 | 433 | 422 | 2256 |
|
65 |
+
| Rock | 4489 | 1495 | 1473 | 7457 |
|
66 |
+
| Rubble | 3092 | 1030 | 1001 | 5123 |
|
67 |
+
| Sand | 5842 | 1939 | 1938 | 9719 |
|
68 |
+
| Sea_cucumber | 1408 | 439 | 447 | 2294 |
|
69 |
+
| Sea_urchins | 327 | 107 | 111 | 545 |
|
70 |
+
| Sponge | 269 | 96 | 105 | 470 |
|
71 |
+
| Syringodium_isoetifolium | 1212 | 392 | 391 | 1995 |
|
72 |
+
| Thalassodendron_ciliatum | 782 | 261 | 260 | 1303 |
|
73 |
+
| Useless | 579 | 193 | 193 | 965 |
|
74 |
|
75 |
+
---
|
76 |
|
77 |
+
# Training procedure
|
78 |
|
79 |
+
## Training hyperparameters
|
80 |
|
81 |
The following hyperparameters were used during training:
|
82 |
+
|
83 |
+
- **Number of Epochs**: 28.0
|
84 |
+
- **Learning Rate**: 0.001
|
85 |
+
- **Train Batch Size**: 32
|
86 |
+
- **Eval Batch Size**: 32
|
87 |
+
- **Optimizer**: Adam
|
88 |
+
- **LR Scheduler Type**: ReduceLROnPlateau with a patience of 5 epochs and a factor of 0.1
|
89 |
+
- **Freeze Encoder**: Yes
|
90 |
+
- **Data Augmentation**: Yes
|
91 |
+
|
92 |
+
|
93 |
+
## Data Augmentation
|
94 |
+
Data were augmented using the following transformations :
|
95 |
+
|
96 |
+
Train Transforms
|
97 |
+
- **PreProcess**: No additional parameters
|
98 |
+
- **Resize**: probability=1.00
|
99 |
+
- **RandomHorizontalFlip**: probability=0.25
|
100 |
+
- **RandomVerticalFlip**: probability=0.25
|
101 |
+
- **ColorJiggle**: probability=0.25
|
102 |
+
- **RandomPerspective**: probability=0.25
|
103 |
+
- **Normalize**: probability=1.00
|
104 |
+
|
105 |
+
Val Transforms
|
106 |
+
- **PreProcess**: No additional parameters
|
107 |
+
- **Resize**: probability=1.00
|
108 |
+
- **Normalize**: probability=1.00
|
109 |
+
|
110 |
+
|
111 |
+
|
112 |
+
## Training results
|
113 |
+
Epoch | Validation Loss | Accuracy | F1 Macro | F1 Micro | Learning Rate
|
114 |
+
--- | --- | --- | --- | --- | ---
|
115 |
+
1 | 0.24598382413387299 | 0.08766458766458766 | 0.5801698557249565 | 0.226738844317642 | 0.001
|
116 |
+
2 | 0.22168199717998505 | 0.13686763686763687 | 0.6411905904944791 | 0.3160165508599939 | 0.001
|
117 |
+
3 | 0.21166761219501495 | 0.14864864864864866 | 0.6595584072466503 | 0.3580673052862397 | 0.001
|
118 |
+
4 | 0.20492619276046753 | 0.16181566181566182 | 0.6673936750272628 | 0.3831121485565155 | 0.001
|
119 |
+
5 | 0.20162147283554077 | 0.1677061677061677 | 0.6707461695365495 | 0.3964602797407069 | 0.001
|
120 |
+
6 | 0.20019273459911346 | 0.1677061677061677 | 0.6719734660033168 | 0.40758628553731013 | 0.001
|
121 |
+
7 | 0.19761690497398376 | 0.17463617463617465 | 0.6751762240426747 | 0.4142080471846538 | 0.001
|
122 |
+
8 | 0.19706940650939941 | 0.17636867636867637 | 0.6823529411764706 | 0.42809095916498113 | 0.001
|
123 |
+
9 | 0.19613835215568542 | 0.17636867636867637 | 0.6844589857443328 | 0.43000179684162393 | 0.001
|
124 |
+
10 | 0.19443827867507935 | 0.18052668052668053 | 0.676261056657901 | 0.4264062108185488 | 0.001
|
125 |
+
11 | 0.19399969279766083 | 0.1781011781011781 | 0.6902341199514971 | 0.43914447135579204 | 0.001
|
126 |
+
12 | 0.19451384246349335 | 0.1729036729036729 | 0.6938511326860841 | 0.45234247782022446 | 0.001
|
127 |
+
13 | 0.19363747537136078 | 0.1794871794871795 | 0.6907971453892439 | 0.44605482120784584 | 0.001
|
128 |
+
14 | 0.1931454837322235 | 0.1781011781011781 | 0.6916442548455903 | 0.44244925103284655 | 0.001
|
129 |
+
15 | 0.1935158371925354 | 0.18087318087318088 | 0.6936180088187515 | 0.44307178033824657 | 0.001
|
130 |
+
16 | 0.19309590756893158 | 0.18052668052668053 | 0.6895936942854461 | 0.4428841041517678 | 0.001
|
131 |
+
17 | 0.19311168789863586 | 0.18191268191268192 | 0.6953186376449928 | 0.4411042424961882 | 0.001
|
132 |
+
18 | 0.19081147015094757 | 0.18572418572418573 | 0.6983818770226538 | 0.4490480976278912 | 0.001
|
133 |
+
19 | 0.19249168038368225 | 0.1812196812196812 | 0.6878854936673101 | 0.4428453523216445 | 0.001
|
134 |
+
20 | 0.19134406745433807 | 0.1774081774081774 | 0.6796580216840999 | 0.43568338344914237 | 0.001
|
135 |
+
21 | 0.19149190187454224 | 0.18225918225918225 | 0.6957772621809745 | 0.4381469652060519 | 0.001
|
136 |
+
22 | 0.19192616641521454 | 0.1826056826056826 | 0.7038712011577424 | 0.4534807464842353 | 0.001
|
137 |
+
23 | 0.19255639612674713 | 0.17983367983367984 | 0.6907461850762985 | 0.4363028843794499 | 0.001
|
138 |
+
24 | 0.19186602532863617 | 0.18052668052668053 | 0.6952745610758312 | 0.45443118252910614 | 0.001
|
139 |
+
25 | 0.19193170964717865 | 0.1781011781011781 | 0.6961779911373708 | 0.4465566917300777 | 0.0001
|
140 |
+
26 | 0.19118554890155792 | 0.18225918225918225 | 0.6942802624842929 | 0.441825214268795 | 0.0001
|
141 |
+
27 | 0.19123922288417816 | 0.18087318087318088 | 0.6971996137398262 | 0.449975636684123 | 0.0001
|
142 |
+
28 | 0.19151046872138977 | 0.18572418572418573 | 0.6943913469159402 | 0.44543509037683293 | 0.0001
|
143 |
+
|
144 |
+
|
145 |
+
---
|
146 |
+
|
147 |
+
# CO2 Emissions
|
148 |
+
|
149 |
+
The estimated CO2 emissions for training this model are documented below:
|
150 |
+
|
151 |
+
- **Emissions**: 0.1871415951855612 grams of CO2
|
152 |
+
- **Source**: Code Carbon
|
153 |
+
- **Training Type**: fine-tuning
|
154 |
+
- **Geographical Location**: Brest, France
|
155 |
+
- **Hardware Used**: NVIDIA Tesla V100 PCIe 32 Go
|
156 |
+
|
157 |
+
|
158 |
+
---
|
159 |
+
|
160 |
+
# Framework Versions
|
161 |
+
|
162 |
+
- **Transformers**: 4.44.2
|
163 |
+
- **Pytorch**: 2.4.1+cu121
|
164 |
+
- **Datasets**: 3.0.0
|
165 |
+
- **Tokenizers**: 0.19.1
|
166 |
+
|