--- base_model: Qwen/Qwen2.5-3B-Instruct library_name: peft --- # Qwen2.5-3B-Instruct-PromptEnhancing Qwen2.5-3B-Instruct-PromptEnhancing is a LoRA-finetuned instruction-tuned text-generation model. This model was released alongside three other models in the 2-3b parameters range, all trained on the same dataset with the same training arguments. ## Model Details ### Model Description This model is a LoRA fine-tune of [Qwen/Qwen2.5-3B-Instruct](https://huggingface.co/Qwen/Qwen2.5-3B-Instruct). The goal of this finetune is to provide a light-weight prompt enhancing model for stable diffusion (or other diffusers sharing the same prompting conventions) to make image generation more accessible to everyone. - **Developed by:** [groloch](https://huggingface.co/groloch) - **Model type:** LoRA - **Language(s) (NLP):** English - **License:** [qwen-research](https://huggingface.co/Qwen/Qwen2.5-3B-Instruct/blob/main/LICENSE) - **Finetuned from model:** [Qwen/Qwen2.5-3B-Instruct](https://huggingface.co/Qwen/Qwen2.5-3B-Instruct) ### Model Sources [optional] - **Paper:** _Coming soon_ - **Demo:** _Coming soon_ ## Uses This model should be used as a prompt-enhancing model for diffusers. To use it, the simplest is to try out at the official [demo](#) (_coming soon_). ### Direct Use If you want to use it locally, refer to the following code snippet: ```python import torch from transformers import AutoTokenizer, AutoModelForCausalLM base_repo_id = 'Qwen/Qwen2.5-3B-Instruct' adapter_repo_id = 'groloch/Qwen2.5-3B-Instruct-PromptEnhancing' tokenizer = AutoTokenizer.from_pretrained(base_repo_id) model = AutoModelForCausalLM.from_pretrained(base_repo_id, torch_dtype=torch.bfloat16).to('cuda') model.load_adapter(adapter_repo_id) prompt_to_enhance = 'Sinister crocodile eating a jolly rabbit' chat = [ {'role' : 'user', 'content': prompt_to_enhance} ] prompt = tokenizer.apply_chat_template(chat, tokenize=False, add_generation_prompt=True, return_tensors='pt') encoding = tokenizer(prompt, return_tensors="pt").to('cuda') generation_config = model.generation_config generation_config.do_sample = True generation_config.max_new_tokens = 96 generation_config.temperature = 0.3 generation_config.top_p = 0.7 generation_config.num_return_sequences = 1 generation_config.pad_token_id = tokenizer.eos_token_id generation_config.eos_token_id = tokenizer.eos_token_id generation_config.repetition_penalty = 2.0 with torch.inference_mode(): outputs = model.generate( input_ids=encoding.input_ids, attention_mask=encoding.attention_mask, generation_config=generation_config ) print(tokenizer.decode(outputs[0], skip_special_tokens=True)) ``` ### Out-of-Scope Use This model is meant to be used as a prompt enhancer. Inputs should be concise and not too detailed (no full prompts). Using this model for other purposes may yield unexpected behavior. ## Bias, Risks, and Limitations This model was trained on a dataset partially generated by AI, which may contain bias. This is a pretty lightweight model, so it may have significant limitations. ### Recommendations Use high repetition penalty (> 2.0) and low temperature (< 0.4) for generation. Do not generate more than 128 tokens. ## Training Details ### Training Data This model was trained for one epoch on [groloch/stable_diffusion_prompts_instruct](https://huggingface.co/datasets/groloch/stable_diffusion_prompts_instruct). ### Training Hyperparameters _coming soon_ - PEFT 0.13.2