Update README.md
Browse files
README.md
CHANGED
@@ -1,3 +1,196 @@
|
|
1 |
-
---
|
2 |
-
license:
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: mit
|
3 |
+
language:
|
4 |
+
- en
|
5 |
+
base_model:
|
6 |
+
- MoritzLaurer/deberta-v3-large-zeroshot-v2.0
|
7 |
+
pipeline_tag: zero-shot-classification
|
8 |
+
library_name: transformers
|
9 |
+
tags:
|
10 |
+
- politics
|
11 |
+
- text-classification
|
12 |
+
---
|
13 |
+
|
14 |
+
# Model Card for groupappeals_classifier_positive
|
15 |
+
|
16 |
+
This model classifies the valence of rhetorical appeals by politicians to groups ("group appeals") in political speech.
|
17 |
+
|
18 |
+
## Model Details
|
19 |
+
|
20 |
+
### Model Description
|
21 |
+
|
22 |
+
This model adapts [Mike Burnham](https://huggingface.co/mlburnham/deberta-v3-large-polistance-affect-v1.1)'s zero shot model for political stance detection, which is itself an adaptation of [Moritz Laurer](https://huggingface.co/MoritzLaurer/deberta-v3-large-zeroshot-v1.1-all-33)'s zero shot model for classifying political texts. It is trained for the more specific use of classifying the valence of rhetorical appeals by politicians to groups ("group appeals") in political speech. The model takes in sentences that are formatted so as to mention the sender/speaker and the group mentioned (i.e. the 'dyad') of the form: "Politician from <party> mentioning a group (<group>): '<text>'". It returns the probability that the speaker is making a positive appeal to the group.
|
23 |
+
|
24 |
+
- **Developed by:** Christoffer H. Dausgaard & Frederik Hjorth
|
25 |
+
- **Model type:** Fine-tuned DeBERTa-model
|
26 |
+
- **Language(s) (NLP):** Python
|
27 |
+
- **License:** apache-2.0
|
28 |
+
- **Finetuned from model:** deberta-v3-base-polistance-affect-v1.0
|
29 |
+
- **Paper [optional]:** {{ paper | default("[More Information Needed]", true)}}
|
30 |
+
|
31 |
+
## Uses
|
32 |
+
|
33 |
+
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
34 |
+
|
35 |
+
### Direct Use
|
36 |
+
|
37 |
+
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
38 |
+
|
39 |
+
{{ direct_use | default("[More Information Needed]", true)}}
|
40 |
+
|
41 |
+
### Downstream Use [optional]
|
42 |
+
|
43 |
+
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
44 |
+
|
45 |
+
{{ downstream_use | default("[More Information Needed]", true)}}
|
46 |
+
|
47 |
+
### Out-of-Scope Use
|
48 |
+
|
49 |
+
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
50 |
+
|
51 |
+
{{ out_of_scope_use | default("[More Information Needed]", true)}}
|
52 |
+
|
53 |
+
## Bias, Risks, and Limitations
|
54 |
+
|
55 |
+
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
56 |
+
|
57 |
+
{{ bias_risks_limitations | default("[More Information Needed]", true)}}
|
58 |
+
|
59 |
+
### Recommendations
|
60 |
+
|
61 |
+
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
62 |
+
|
63 |
+
{{ bias_recommendations | default("Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", true)}}
|
64 |
+
|
65 |
+
## How to Get Started with the Model
|
66 |
+
|
67 |
+
Use the code below to get started with the model.
|
68 |
+
|
69 |
+
{{ get_started_code | default("[More Information Needed]", true)}}
|
70 |
+
|
71 |
+
## Training Details
|
72 |
+
|
73 |
+
### Training Data
|
74 |
+
|
75 |
+
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
76 |
+
|
77 |
+
The model was trained using a subset of the ParlSpeech v2 dataset that covers the universe of parliamentary speeches in the UK House of Commons from 1988-2019.
|
78 |
+
The subset consists of 2,534 sentences manually coded by the authors.
|
79 |
+
The sentences were randomly sampled within party- and group-strata, with oversampling of negative sentences.
|
80 |
+
|
81 |
+
### Training Procedure
|
82 |
+
|
83 |
+
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
84 |
+
|
85 |
+
#### Preprocessing [optional]
|
86 |
+
|
87 |
+
{{ preprocessing | default("[More Information Needed]", true)}}
|
88 |
+
|
89 |
+
|
90 |
+
#### Training Hyperparameters
|
91 |
+
|
92 |
+
- **Training regime:** {{ training_regime | default("[More Information Needed]", true)}} <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
93 |
+
|
94 |
+
#### Speeds, Sizes, Times [optional]
|
95 |
+
|
96 |
+
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
97 |
+
|
98 |
+
{{ speeds_sizes_times | default("[More Information Needed]", true)}}
|
99 |
+
|
100 |
+
## Evaluation
|
101 |
+
|
102 |
+
<!-- This section describes the evaluation protocols and provides the results. -->
|
103 |
+
|
104 |
+
### Testing Data, Factors & Metrics
|
105 |
+
|
106 |
+
#### Testing Data
|
107 |
+
|
108 |
+
<!-- This should link to a Dataset Card if possible. -->
|
109 |
+
|
110 |
+
{{ testing_data | default("[More Information Needed]", true)}}
|
111 |
+
|
112 |
+
#### Factors
|
113 |
+
|
114 |
+
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
115 |
+
|
116 |
+
{{ testing_factors | default("[More Information Needed]", true)}}
|
117 |
+
|
118 |
+
#### Metrics
|
119 |
+
|
120 |
+
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
121 |
+
|
122 |
+
{{ testing_metrics | default("[More Information Needed]", true)}}
|
123 |
+
|
124 |
+
### Results
|
125 |
+
|
126 |
+
{{ results | default("[More Information Needed]", true)}}
|
127 |
+
|
128 |
+
#### Summary
|
129 |
+
|
130 |
+
{{ results_summary | default("", true) }}
|
131 |
+
|
132 |
+
## Model Examination [optional]
|
133 |
+
|
134 |
+
<!-- Relevant interpretability work for the model goes here -->
|
135 |
+
|
136 |
+
{{ model_examination | default("[More Information Needed]", true)}}
|
137 |
+
|
138 |
+
## Environmental Impact
|
139 |
+
|
140 |
+
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
141 |
+
|
142 |
+
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
143 |
+
|
144 |
+
- **Hardware Type:** {{ hardware_type | default("[More Information Needed]", true)}}
|
145 |
+
- **Hours used:** {{ hours_used | default("[More Information Needed]", true)}}
|
146 |
+
- **Cloud Provider:** {{ cloud_provider | default("[More Information Needed]", true)}}
|
147 |
+
- **Compute Region:** {{ cloud_region | default("[More Information Needed]", true)}}
|
148 |
+
- **Carbon Emitted:** {{ co2_emitted | default("[More Information Needed]", true)}}
|
149 |
+
|
150 |
+
## Technical Specifications [optional]
|
151 |
+
|
152 |
+
### Model Architecture and Objective
|
153 |
+
|
154 |
+
{{ model_specs | default("[More Information Needed]", true)}}
|
155 |
+
|
156 |
+
### Compute Infrastructure
|
157 |
+
|
158 |
+
{{ compute_infrastructure | default("[More Information Needed]", true)}}
|
159 |
+
|
160 |
+
#### Hardware
|
161 |
+
|
162 |
+
{{ hardware_requirements | default("[More Information Needed]", true)}}
|
163 |
+
|
164 |
+
#### Software
|
165 |
+
|
166 |
+
{{ software | default("[More Information Needed]", true)}}
|
167 |
+
|
168 |
+
## Citation [optional]
|
169 |
+
|
170 |
+
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
171 |
+
|
172 |
+
**BibTeX:**
|
173 |
+
|
174 |
+
{{ citation_bibtex | default("[More Information Needed]", true)}}
|
175 |
+
|
176 |
+
**APA:**
|
177 |
+
|
178 |
+
{{ citation_apa | default("[More Information Needed]", true)}}
|
179 |
+
|
180 |
+
## Glossary [optional]
|
181 |
+
|
182 |
+
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
183 |
+
|
184 |
+
{{ glossary | default("[More Information Needed]", true)}}
|
185 |
+
|
186 |
+
## More Information [optional]
|
187 |
+
|
188 |
+
{{ more_information | default("[More Information Needed]", true)}}
|
189 |
+
|
190 |
+
## Model Card Authors [optional]
|
191 |
+
|
192 |
+
{{ model_card_authors | default("[More Information Needed]", true)}}
|
193 |
+
|
194 |
+
## Model Card Contact
|
195 |
+
|
196 |
+
{{ model_card_contact | default("[More Information Needed]", true)}}
|