File size: 1,588 Bytes
57f812d 507373e 57f812d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 |
---
license: apache-2.0
language:
- el
pipeline_tag: text-generation
---
# Model Description
This is an instruction tuned model based on the gsar78/GreekLlama-1.1B-base model.
The dataset used has 52k instruction/response pairs, all in Greek language
Notice: The model is for experimental & research purposes.
# Usage
To use you can just run the following in a Colab configured with a GPU:
```python
from transformers import AutoTokenizer, AutoModelForCausalLM
import transformers
import torch
# Load the tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("gsar78/GreekLlama-1.1B-it")
model = AutoModelForCausalLM.from_pretrained("gsar78/GreekLlama-1.1B-it")
# Check if CUDA is available and move the model to GPU if possible
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model.to(device)
prompt = "Ποιά είναι τα δύο βασικά πράγματα που πρέπει να γνωρίζω για την Τεχνητή Νοημοσύνη:"
# Tokenize the input prompt
inputs = tokenizer(prompt, return_tensors="pt").to(device)
# Generate the output
generation_params = {
#"max_new_tokens": 250, # Adjust the number of tokens generated
"do_sample": True, # Enable sampling to diversify outputs
"temperature": 0.1, # Sampling temperature
"top_p": 0.9, # Nucleus sampling
"num_return_sequences": 1,
}
output = model.generate(**inputs, **generation_params)
# Decode the generated text
generated_text = tokenizer.decode(output[0], skip_special_tokens=True)
print("Generated Text:")
print(generated_text)
``` |