--- license: apache-2.0 language: - el pipeline_tag: text-generation --- # Model Description This is an instruction tuned model based on the gsar78/GreekLlama-1.1B-base model. The dataset used is 52k row instruction/response pairs all in Greek language Notice: The model is for experimental & research purposes. # Usage To use you can just run the following in a Colab configured with a GPU: ```python from transformers import AutoTokenizer, AutoModelForCausalLM import transformers import torch # Load the tokenizer and model tokenizer = AutoTokenizer.from_pretrained("gsar78/GreekLlama-1.1B-it") model = AutoModelForCausalLM.from_pretrained("gsar78/GreekLlama-1.1B-it") # Check if CUDA is available and move the model to GPU if possible device = torch.device("cuda" if torch.cuda.is_available() else "cpu") model.to(device) prompt = "Ποιά είναι τα δύο βασικά πράγματα που πρέπει να γνωρίζω για την Τεχνητή Νοημοσύνη:" # Tokenize the input prompt inputs = tokenizer(prompt, return_tensors="pt").to(device) # Generate the output generation_params = { #"max_new_tokens": 250, # Adjust the number of tokens generated "do_sample": True, # Enable sampling to diversify outputs "temperature": 0.1, # Sampling temperature "top_p": 0.9, # Nucleus sampling "num_return_sequences": 1, } output = model.generate(**inputs, **generation_params) # Decode the generated text generated_text = tokenizer.decode(output[0], skip_special_tokens=True) print("Generated Text:") print(generated_text) ```