gsar78 commited on
Commit
bb8f496
·
verified ·
1 Parent(s): 7e197e2

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +14 -4
README.md CHANGED
@@ -51,7 +51,12 @@ This commitment to ongoing improvement enables the model to adapt to emerging tr
51
 
52
  ## Usage:
53
 
54
- Simplified code to run the Emotion classification.
 
 
 
 
 
55
 
56
  ```python
57
  import torch
@@ -187,9 +192,6 @@ Emotion probabilities (%):
187
  neutral: 0.75%
188
  ```
189
 
190
- For simplicity and as an alternative, you can run this Google Colab:
191
- [Google Colab](https://colab.research.google.com/drive/1Hr7NCCA3VprpFL8WLpO3lKHQaUlYkF62?usp=sharing)
192
-
193
 
194
  ## Evaluation
195
 
@@ -198,13 +200,21 @@ Due to time constraints, there is no official benchmark yet.
198
  However, the evaluation on a test dataset is the following:
199
 
200
  Evaluation results:
 
201
  {
 
202
  'eval_loss': 0.0322,
 
203
  'eval_accuracy': 0.7857,
 
204
  'eval_hamming_loss': 0.0141,
 
205
  'eval_precision': 0.9785,
 
206
  'eval_recall': 0.9133,
 
207
  'eval_f1': 0.9448
 
208
  }
209
 
210
 
 
51
 
52
  ## Usage:
53
 
54
+
55
+ For simplicity, you can run this Google Colab:
56
+ [Google Colab](https://colab.research.google.com/drive/1Hr7NCCA3VprpFL8WLpO3lKHQaUlYkF62?usp=sharing)
57
+
58
+
59
+ Alternatively, run and/or embed the following code in your application:
60
 
61
  ```python
62
  import torch
 
192
  neutral: 0.75%
193
  ```
194
 
 
 
 
195
 
196
  ## Evaluation
197
 
 
200
  However, the evaluation on a test dataset is the following:
201
 
202
  Evaluation results:
203
+
204
  {
205
+
206
  'eval_loss': 0.0322,
207
+
208
  'eval_accuracy': 0.7857,
209
+
210
  'eval_hamming_loss': 0.0141,
211
+
212
  'eval_precision': 0.9785,
213
+
214
  'eval_recall': 0.9133,
215
+
216
  'eval_f1': 0.9448
217
+
218
  }
219
 
220