Update README.md
Browse files
README.md
CHANGED
@@ -1,3 +1,152 @@
|
|
1 |
-
#
|
2 |
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# ViGoRL: Visually Grounded Reinforcement Learning for Visual Reasoning
|
2 |
|
3 |
+
This model card describes the ViGoRL (**Vi**sually **G**r**o**unded **R**einforcement **L**earning) model, introduced in our paper ["Grounded Reinforcement Learning for Visual Reasoning"](https://arxiv.org/abs/2505.23678).
|
4 |
+
|
5 |
+
**Authors:** Gabriel Sarch, Snigdha Saha, Naitik Khandelwal, Ayush Jain, Michael J. Tarr, Aviral Kumar, Katerina Fragkiadaki
|
6 |
+
|
7 |
+
---
|
8 |
+
|
9 |
+
## Model Overview
|
10 |
+
|
11 |
+
ViGoRL is a vision-language model fine-tuned using reinforcement learning (RL) to explicitly anchor textual reasoning steps to visual coordinates. Inspired by human visual cognition, ViGoRL employs multi-turn visual grounding, dynamically zooming into image regions to perform fine-grained visual reasoning and grounding.
|
12 |
+
|
13 |
+
This model was trained using supervised fine-tuning (SFT) on visually-grounded reasoning traces generated via Monte Carlo Tree Search (MCTS), followed by reinforcement learning with Group Relative Policy Optimization (GRPO).
|
14 |
+
|
15 |
+
---
|
16 |
+
|
17 |
+
## Model Details
|
18 |
+
|
19 |
+
* **Base Architecture:** Qwen2.5-Vision-Language (3B or 7B parameters)
|
20 |
+
* **Training Paradigm:**
|
21 |
+
|
22 |
+
* Supervised Fine-Tuning on MCTS-generated reasoning traces
|
23 |
+
* Group Relative Policy Optimization (GRPO)
|
24 |
+
* Multi-turn visual grounding with dynamic zoom-in feedback (if "Multiturn" appears in name)
|
25 |
+
|
26 |
+
---
|
27 |
+
|
28 |
+
## Use Cases
|
29 |
+
|
30 |
+
This model excels in visual reasoning tasks that require precise visual grounding and region-level reasoning. Please see model name for specific domain.
|
31 |
+
|
32 |
+
* **Spatial Reasoning:** SAT-2, BLINK, RoboSpatial
|
33 |
+
* **Visual Search:** V\*Bench
|
34 |
+
* **Web Interaction and Grounding:** ScreenSpot (Pro and V2), VisualWebArena
|
35 |
+
|
36 |
+
---
|
37 |
+
|
38 |
+
## Usage
|
39 |
+
|
40 |
+
You can load this model easily using Hugging Face's Transformers library:
|
41 |
+
|
42 |
+
```python
|
43 |
+
from transformers import Qwen2_5_VLForConditionalGeneration, AutoTokenizer, AutoProcessor
|
44 |
+
from qwen_vl_utils import process_vision_info
|
45 |
+
import torch
|
46 |
+
|
47 |
+
# # default: Load the model on the available device(s)
|
48 |
+
# model = Qwen2_5_VLForConditionalGeneration.from_pretrained(
|
49 |
+
# "gsarch/ViGoRL-Multiturn-3b-Visual-Search", torch_dtype="auto", device_map="auto"
|
50 |
+
# ) # replace with any of the ViGoRL models
|
51 |
+
|
52 |
+
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
|
53 |
+
model = Qwen2_5_VLForConditionalGeneration.from_pretrained(
|
54 |
+
"gsarch/ViGoRL-Multiturn-3b-Visual-Search",
|
55 |
+
torch_dtype=torch.bfloat16,
|
56 |
+
attn_implementation="flash_attention_2",
|
57 |
+
device_map="auto",
|
58 |
+
)
|
59 |
+
|
60 |
+
# default processer
|
61 |
+
processor = AutoProcessor.from_pretrained("gsarch/ViGoRL-Multiturn-3b-Visual-Search")
|
62 |
+
|
63 |
+
# The default range for the number of visual tokens per image in the model is 4-16384.
|
64 |
+
# You can set min_pixels and max_pixels according to your needs, such as a token range of 256-1280, to balance performance and cost.
|
65 |
+
# min_pixels = 256*28*28
|
66 |
+
# max_pixels = 1280*28*28
|
67 |
+
# processor = AutoProcessor.from_pretrained("gsarch/ViGoRL-Multiturn-3b-Visual-Search", min_pixels=min_pixels, max_pixels=max_pixels)
|
68 |
+
|
69 |
+
# messages = [
|
70 |
+
# {
|
71 |
+
# "role": "user",
|
72 |
+
# "content": [
|
73 |
+
# {
|
74 |
+
# "type": "image",
|
75 |
+
# "image": "https://qianwen-res.oss-cn-beijing.aliyuncs.com/Qwen-VL/assets/demo.jpeg",
|
76 |
+
# },
|
77 |
+
# {"type": "text", "text": "What color is the leash."},
|
78 |
+
# ],
|
79 |
+
# }
|
80 |
+
# ]
|
81 |
+
|
82 |
+
messages = [
|
83 |
+
{
|
84 |
+
"role": "user",
|
85 |
+
"content": [
|
86 |
+
{
|
87 |
+
"type": "image",
|
88 |
+
"image": "path/to/image.png",
|
89 |
+
},
|
90 |
+
{"type": "text", "text": "QUERY HERE"},
|
91 |
+
],
|
92 |
+
}
|
93 |
+
]
|
94 |
+
|
95 |
+
# Preparation for inference
|
96 |
+
text = processor.apply_chat_template(
|
97 |
+
messages, tokenize=False, add_generation_prompt=True
|
98 |
+
)
|
99 |
+
image_inputs, video_inputs = process_vision_info(messages)
|
100 |
+
inputs = processor(
|
101 |
+
text=[text],
|
102 |
+
images=image_inputs,
|
103 |
+
videos=video_inputs,
|
104 |
+
padding=True,
|
105 |
+
return_tensors="pt",
|
106 |
+
)
|
107 |
+
inputs = inputs.to("cuda")
|
108 |
+
|
109 |
+
# Inference: Generation of the output
|
110 |
+
generated_ids = model.generate(**inputs, max_new_tokens=512)
|
111 |
+
generated_ids_trimmed = [
|
112 |
+
out_ids[len(in_ids) :] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
|
113 |
+
]
|
114 |
+
output_text = processor.batch_decode(
|
115 |
+
generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False
|
116 |
+
)
|
117 |
+
print(output_text) # this will output a single tool call turn of the model if version is multiturn.
|
118 |
+
# Example output of gsarch/ViGoRL-Multiturn-3b-Visual-Search: ['<think> The leash appears to be red, as seen near the dog\'s paw and the person\'s hand. (1028, 1093). </think>\n<tool_call>\n{"name": "search_coordinate", "arguments": {"coordinate": [1028, 1093]}}\n</tool_call>']
|
119 |
+
```
|
120 |
+
|
121 |
+
**Important**: This model requires a system prompt for proper usage. Please see the model's chat template for details.
|
122 |
+
|
123 |
+
---
|
124 |
+
|
125 |
+
## Datasets and Training Data
|
126 |
+
|
127 |
+
Training datasets and generated reasoning chains are publicly available:
|
128 |
+
|
129 |
+
* [Code](https://github.com/Gabesarch/grounded-rl)
|
130 |
+
* [ViGoRL Datasets on Hugging Face](https://huggingface.co/datasets/gsarch/vigorl_datasets)
|
131 |
+
|
132 |
+
---
|
133 |
+
|
134 |
+
## Citation
|
135 |
+
|
136 |
+
If you use ViGoRL in your research or applications, please cite our paper:
|
137 |
+
|
138 |
+
```bibtex
|
139 |
+
@article{sarch2025vigorl,
|
140 |
+
title={Grounded Reinforcement Learning for Visual Reasoning},
|
141 |
+
author={Sarch, Gabriel and Saha, Snigdha and Khandelwal, Naitik and Jain, Ayush and Tarr, Michael J and Kumar, Aviral and Fragkiadaki, Katerina},
|
142 |
+
year={2025}
|
143 |
+
}
|
144 |
+
```
|
145 |
+
|
146 |
+
---
|
147 |
+
|
148 |
+
## Contact
|
149 |
+
|
150 |
+
For questions, feedback, or collaborations, please reach out to Gabriel Sarch or open an issue in our [GitHub repository](https://github.com/Gabesarch/grounded-rl).
|
151 |
+
|
152 |
+
---
|