--- library_name: transformers language: - ja base_model: - llm-jp/llm-jp-3-13b license: apache-2.0 pipeline_tag: text-generation --- # Sample Use ```python from transformers import ( AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig, ) import torch from datasets import load_dataset from tqdm import tqdm import json import re # Hugging Face Token HF_TOKEN = "your_token" # モデルを読み込み model_id = "guTakuto/llm-jp-3-13b-finetune" bnb_config = BitsAndBytesConfig( load_in_4bit=True, bnb_4bit_quant_type="nf4", bnb_4bit_compute_dtype=torch.bfloat16, ) model = AutoModelForCausalLM.from_pretrained( model_id, quantization_config=bnb_config, device_map="auto" use_auth_token=HF_TOKEN, ) tokenizer = AutoTokenizer.from_pretrained( model_id, trust_remote_code=True, use_auth_token=HF_TOKEN, ) # タスクデータの読み込み datasets = [] with open("elyza-tasks-100-TV_0.jsonl", "r") as f: item = "" for line in f: line = line.strip() item += line if item.endswith("}"): datasets.append(json.loads(item)) item = "" # モデルによるタスクの推論 results = [] for data in tqdm(datasets): inputs = data["input"] prompt = f"""### 指示 {inputs} ### 回答 """ tokenized_input = tokenizer.encode(prompt, add_special_tokens=False, return_tensors="pt").to(model.device) attention_mask = torch.ones_like(tokenized_input) with torch.no_grad(): regenerate_count = 0 # 再生成回数をカウントする変数 max_attempts = 5 # 再生成の最大回数 while True: # 結果が空でない場合にループを抜ける outputs = model.generate( tokenized_input, attention_mask=attention_mask, max_new_tokens=200, do_sample=False, repetition_penalty=1.2, pad_token_id=tokenizer.eos_token_id )[0] # トークン列をデコード output = tokenizer.decode(outputs[tokenized_input.size(1):], skip_special_tokens=True) print(f"output: {output}") # 空でない場合にループを抜ける if output.strip(): break # 再生成回数をカウントし、メッセージを表示 regenerate_count += 1 print(f"Output is empty. Regenerating... (Attempt {regenerate_count})") # 最大再生成回数を超えた場合に強制終了 if regenerate_count >= max_attempts: print("Maximum regeneration attempts reached. Exiting loop.") break results.append({"task_id": data["task_id"], "input": inputs, "output": output}) # jsol生成 jsonl_id = re.sub(".*/", "", model_id) with open(f"jsonl_output/{jsonl_id}-outputs.jsonl", 'w', encoding='utf-8') as f: for result in results: json.dump(result, f, ensure_ascii=False) f.write('\n')