guillermoruiz
commited on
Upload TFBilma
Browse files- config.json +20 -0
- configuration_bilma.py +41 -0
- modeling_bilma.py +380 -0
- tf_model.h5 +3 -0
config.json
ADDED
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "bilma_CL",
|
3 |
+
"architectures": [
|
4 |
+
"Bilma"
|
5 |
+
],
|
6 |
+
"auto_map": {
|
7 |
+
"AutoConfig": "configuration_bilma.BilmaConfig",
|
8 |
+
"TFAutoModel": "modeling_bilma.TFBilma"
|
9 |
+
},
|
10 |
+
"hidden_dropout_prob": 0.1,
|
11 |
+
"hidden_size": 512,
|
12 |
+
"include_top": true,
|
13 |
+
"model_type": "bilma",
|
14 |
+
"num_attention_heads": 4,
|
15 |
+
"num_hidden_layers": 2,
|
16 |
+
"seq_max_length": 280,
|
17 |
+
"transformers_version": "4.30.2",
|
18 |
+
"vocab_size": 29025,
|
19 |
+
"weights": "CL"
|
20 |
+
}
|
configuration_bilma.py
ADDED
@@ -0,0 +1,41 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import PretrainedConfig
|
2 |
+
|
3 |
+
class BilmaConfig(PretrainedConfig):
|
4 |
+
model_type = "bilma"
|
5 |
+
|
6 |
+
def __init__(
|
7 |
+
self,
|
8 |
+
weights="CL",
|
9 |
+
include_top=True,
|
10 |
+
num_attention_heads: int = 4,
|
11 |
+
num_hidden_layers: int = 2,
|
12 |
+
seq_max_length: int = 280,
|
13 |
+
hidden_size: int = 512,
|
14 |
+
vocab_size: int = 29025,
|
15 |
+
hidden_dropout_prob: float = 0.1,
|
16 |
+
**kwargs,
|
17 |
+
):
|
18 |
+
countries = ["CL"]
|
19 |
+
if weights not in countries:
|
20 |
+
raise ValueError(f"`weights` must be one of {countries}, got {weights}.")
|
21 |
+
if weights is not None:
|
22 |
+
self.weights = weights
|
23 |
+
self.include_top = include_top
|
24 |
+
self.num_attention_heads = 4
|
25 |
+
self.num_hidden_layers = 2
|
26 |
+
self.seq_max_length = 280
|
27 |
+
self.hidden_size = 512
|
28 |
+
self.vocab_size = 29025
|
29 |
+
self.hidden_dropout_prob = 0.1
|
30 |
+
super().__init__(**kwargs)
|
31 |
+
return
|
32 |
+
|
33 |
+
self.weights = weights
|
34 |
+
self.include_top = include_top
|
35 |
+
self.num_attention_heads = num_attention_heads
|
36 |
+
self.num_hidden_layers = num_hidden_layers
|
37 |
+
self.seq_max_length = seq_max_length
|
38 |
+
self.hidden_size = hidden_size
|
39 |
+
self.vocab_size = vocab_size
|
40 |
+
self.hidden_dropout_prob = hidden_dropout_prob
|
41 |
+
super().__init__(**kwargs)
|
modeling_bilma.py
ADDED
@@ -0,0 +1,380 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import TFPreTrainedModel, PreTrainedTokenizer
|
2 |
+
from tensorflow.keras.models import Model, load_model, Sequential
|
3 |
+
from tensorflow.keras.layers import Layer, Dense, concatenate, Input, add, Dropout, LayerNormalization, MultiHeadAttention, Embedding
|
4 |
+
import tensorflow as tf
|
5 |
+
import numpy as np
|
6 |
+
|
7 |
+
from typing import Dict
|
8 |
+
|
9 |
+
import re
|
10 |
+
import unicodedata
|
11 |
+
|
12 |
+
from configuration_bilma import BilmaConfig
|
13 |
+
|
14 |
+
# copied from preprocessing.py
|
15 |
+
BLANK = ' '
|
16 |
+
|
17 |
+
RE_OPS = re.I | re.M | re.S
|
18 |
+
RE_USR = re.compile(r"""@\S+""", RE_OPS)
|
19 |
+
RE_TAG = re.compile(r"""#\S+""", RE_OPS)
|
20 |
+
RE_URL = re.compile(r"""(http|ftp|https)://\S+""", RE_OPS)
|
21 |
+
RE_NUM = re.compile(r"""[-+]?\d+\.?\d*""", RE_OPS)
|
22 |
+
|
23 |
+
SYMBOLS_ = "()[]¿?¡!{}~<>|"
|
24 |
+
SYMBOLS = set(";:,.@\\-\"/" + SYMBOLS_)
|
25 |
+
|
26 |
+
|
27 |
+
|
28 |
+
# ------------------
|
29 |
+
# Class declaration
|
30 |
+
# ------------------
|
31 |
+
|
32 |
+
|
33 |
+
class TFBilma(TFPreTrainedModel):
|
34 |
+
config_class = BilmaConfig
|
35 |
+
main_input_name = "input_ids"
|
36 |
+
#base_model_prefix = "bilma"
|
37 |
+
|
38 |
+
def __init__(self, config):
|
39 |
+
self.seq_max_length = config.seq_max_length
|
40 |
+
self.include_top = config.include_top
|
41 |
+
super().__init__(config)
|
42 |
+
|
43 |
+
self.model = bilma(num_enc=config.num_hidden_layers,
|
44 |
+
embed_dim=config.hidden_size,
|
45 |
+
max_length=config.seq_max_length,
|
46 |
+
num_heads=config.num_attention_heads,
|
47 |
+
ff_dim=config.hidden_size,
|
48 |
+
vocab_size=config.vocab_size,
|
49 |
+
rate=config.hidden_dropout_prob,
|
50 |
+
include_top = config.include_top)
|
51 |
+
|
52 |
+
@property
|
53 |
+
def dummy_inputs(self) -> Dict[str, tf.Tensor]:
|
54 |
+
|
55 |
+
dummies = {}
|
56 |
+
for key, spec in self.input_signature.items():
|
57 |
+
dummy_shape = [dim if dim is not None else 2 for dim in spec.shape]
|
58 |
+
if spec.shape[0] is None:
|
59 |
+
dummy_shape[0] = 1
|
60 |
+
dummies[key] = tf.ones(shape=dummy_shape, dtype=spec.dtype)
|
61 |
+
|
62 |
+
|
63 |
+
return dummies
|
64 |
+
|
65 |
+
@property
|
66 |
+
def input_signature(self) -> Dict[str, tf.TensorSpec]:
|
67 |
+
sig = {}
|
68 |
+
sig["input_ids"] = tf.TensorSpec([None, self.seq_max_length], tf.int32, name="input_ids")
|
69 |
+
return sig
|
70 |
+
|
71 |
+
|
72 |
+
def call(self, inputs):
|
73 |
+
ins = tf.cast(inputs["input_ids"], tf.float32)
|
74 |
+
if self.include_top:
|
75 |
+
output = {"logits":self.model(ins)}
|
76 |
+
else:
|
77 |
+
output = {"last_hidden_state":self.model(ins)}
|
78 |
+
return output
|
79 |
+
|
80 |
+
# copied from bilma_model.py
|
81 |
+
# --------------------------
|
82 |
+
|
83 |
+
def loss_function(ignore_id=0):
|
84 |
+
loss_object = tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True, reduction='none')
|
85 |
+
def loss(real, pred):
|
86 |
+
mask = tf.math.logical_not(tf.math.equal(real, ignore_id))
|
87 |
+
loss_ = loss_object(real, pred)
|
88 |
+
mask = tf.cast(mask, dtype=loss_.dtype)
|
89 |
+
loss_ *= mask
|
90 |
+
sum_ = tf.reduce_sum(mask,axis=1)
|
91 |
+
|
92 |
+
loss_ = tf.math.divide_no_nan(tf.reduce_sum(loss_, axis=1), sum_)
|
93 |
+
return loss_
|
94 |
+
return loss
|
95 |
+
|
96 |
+
def accuracy_function(ignore_id=0):
|
97 |
+
def acc_mlm(real, pred):
|
98 |
+
accuracies = tf.equal(tf.cast(real, tf.int64), tf.argmax(pred, axis=2))
|
99 |
+
|
100 |
+
mask = tf.math.logical_not(tf.math.equal(real, ignore_id))
|
101 |
+
accuracies = tf.math.logical_and(mask, accuracies)
|
102 |
+
|
103 |
+
accuracies = tf.cast(accuracies, dtype=tf.float32)
|
104 |
+
mask = tf.cast(mask, dtype=tf.float32)
|
105 |
+
return tf.math.divide_no_nan(tf.reduce_sum(accuracies), tf.reduce_sum(mask))
|
106 |
+
return acc_mlm
|
107 |
+
|
108 |
+
def bilma(num_enc=6, embed_dim=300, max_length=50, num_heads=6, ff_dim=512, vocab_size=9739, rate=0.1, include_top=True):
|
109 |
+
capt_inputs_ids = Input(shape=(max_length, ), name='input_ids')
|
110 |
+
capt_embedding = Embedding(vocab_size, embed_dim, mask_zero=False, name="bilma/embedding")
|
111 |
+
capt_inputs = capt_embedding(capt_inputs_ids)
|
112 |
+
|
113 |
+
enc = Encoder(num_enc, embed_dim, max_length, num_heads, ff_dim, rate=rate, name="bilma/encoder")
|
114 |
+
enc_output = enc(capt_inputs)
|
115 |
+
if include_top:
|
116 |
+
fin_output = Dense(vocab_size, use_bias=True, name="bilma/dense_final")(enc_output)
|
117 |
+
else:
|
118 |
+
fin_output = enc_output
|
119 |
+
|
120 |
+
caption_model = Model(inputs=capt_inputs_ids, outputs=[fin_output], name="bilma_model")
|
121 |
+
return caption_model
|
122 |
+
|
123 |
+
def load(model_file):
|
124 |
+
custom_objects={"EncoderBlock": EncoderBlock,
|
125 |
+
"Encoder": Encoder,
|
126 |
+
"loss": loss_function(),
|
127 |
+
"acc_mlm":accuracy_function(),
|
128 |
+
}
|
129 |
+
return load_model(model_file, custom_objects=custom_objects)
|
130 |
+
|
131 |
+
|
132 |
+
#
|
133 |
+
# Copied from transformer_text.py
|
134 |
+
# -------------------------------
|
135 |
+
|
136 |
+
class EncoderBlock(Layer):
|
137 |
+
def __init__(self, layer_num, patch_dim, num_heads, ff_dim, rate=0.1, **kwargs):
|
138 |
+
super(EncoderBlock, self).__init__(**kwargs)
|
139 |
+
self.ln = layer_num
|
140 |
+
self.p_d = patch_dim
|
141 |
+
self.n_h = num_heads
|
142 |
+
self.f_d = ff_dim
|
143 |
+
self.rate = rate
|
144 |
+
|
145 |
+
self.att = MultiHeadAttention(num_heads=num_heads, key_dim=patch_dim, name=f"bilma/MHA_{layer_num}")
|
146 |
+
self.ffn = Sequential(
|
147 |
+
#[Conv1D(ff_dim, kernel_size=1, activation=tf.nn.gelu),
|
148 |
+
# Conv1D(patch_dim, kernel_size=1),]
|
149 |
+
[Dense(ff_dim, activation=tf.nn.gelu, name=f"bilma/dense1_{layer_num}"),
|
150 |
+
Dense(patch_dim, name=f"bilma/dense2_{layer_num}")]
|
151 |
+
)
|
152 |
+
#self.layernorm0 = LayerNormalization(epsilon=1e-6)
|
153 |
+
self.layernorm1 = LayerNormalization(epsilon=1e-6, name=f"ln1_{layer_num}")
|
154 |
+
self.layernorm2 = LayerNormalization(epsilon=1e-6, name=f"ln2_{layer_num}")
|
155 |
+
self.dropout1 = Dropout(rate)
|
156 |
+
self.dropout2 = Dropout(rate)
|
157 |
+
|
158 |
+
def get_config(self):
|
159 |
+
config = super(EncoderBlock, self).get_config()
|
160 |
+
config.update({"layer_num":self.ln, "patch_dim":self.p_d, "num_heads":self.n_h, "ff_dim":self.f_d, "rate":self.rate})
|
161 |
+
return config
|
162 |
+
|
163 |
+
def call(self, inputs, training=False):
|
164 |
+
#inputs = self.layernorm0(inputs)
|
165 |
+
attn_output = self.att(inputs, inputs)
|
166 |
+
attn_output = self.dropout1(attn_output, training=training)
|
167 |
+
out1 = self.layernorm1(add([inputs, attn_output]))
|
168 |
+
ffn_output = self.ffn(out1)
|
169 |
+
ffn_output = self.dropout2(ffn_output, training=training)
|
170 |
+
return self.layernorm2(add([out1, ffn_output]))
|
171 |
+
|
172 |
+
|
173 |
+
class DecoderBlock(Layer):
|
174 |
+
def __init__(self, embed_dim, num_heads, ff_dim, rate=0.1, **kwargs):
|
175 |
+
super(DecoderBlock, self).__init__(**kwargs)
|
176 |
+
self.e_d = embed_dim
|
177 |
+
self.n_h = num_heads
|
178 |
+
self.f_d = ff_dim
|
179 |
+
self.rate = rate
|
180 |
+
|
181 |
+
self.att1 = MultiHeadAttention(num_heads=num_heads, key_dim=embed_dim)
|
182 |
+
self.att2 = MultiHeadAttention(num_heads=num_heads, key_dim=embed_dim)
|
183 |
+
self.ffn = Sequential(
|
184 |
+
#[Conv1D(ff_dim, kernel_size=1, activation=tf.nn.gelu),
|
185 |
+
# Conv1D(embed_dim, kernel_size=1),]
|
186 |
+
[Dense(ff_dim, activation=tf.nn.gelu),
|
187 |
+
Dense(embed_dim),]
|
188 |
+
)
|
189 |
+
self.layernorm1 = LayerNormalization(epsilon=1e-6)
|
190 |
+
self.layernorm2 = LayerNormalization(epsilon=1e-6)
|
191 |
+
self.dropout1 = Dropout(rate)
|
192 |
+
self.dropout2 = Dropout(rate)
|
193 |
+
self.dropout3 = Dropout(rate)
|
194 |
+
|
195 |
+
def get_config(self):
|
196 |
+
config = super(DecoderBlock, self).get_config()
|
197 |
+
config.update({"embed_dim":self.e_d, "num_heads":self.n_h, "ff_dim":self.f_d, "rate":self.rate})
|
198 |
+
return config
|
199 |
+
|
200 |
+
def call(self, inputs, encoder_output, look_ahead_mask, padding_mask, training=None):
|
201 |
+
y, attn_output1 = self.att1(inputs, inputs, attention_mask=look_ahead_mask, return_attention_scores=True)
|
202 |
+
y = self.dropout1(y, training=training)
|
203 |
+
y = add([inputs, y])
|
204 |
+
out1 = self.layernorm1(y)
|
205 |
+
|
206 |
+
y, attn_encoder = self.att2(out1, encoder_output, attention_mask=padding_mask, return_attention_scores=True)
|
207 |
+
y = self.dropout2(y, training=training)
|
208 |
+
y = add([out1, y])
|
209 |
+
out2 = self.layernorm1(y)
|
210 |
+
|
211 |
+
ffn_output = self.ffn(out2)
|
212 |
+
ffn_output = self.dropout3(ffn_output, training=training)
|
213 |
+
final_output = self.layernorm2(out2 + ffn_output)
|
214 |
+
|
215 |
+
return final_output, attn_output1, attn_encoder
|
216 |
+
|
217 |
+
|
218 |
+
class Encoder(Layer):
|
219 |
+
def __init__(self, n, embed_dim, max_length, num_heads, ff_dim, rate=0.1, **kwargs):
|
220 |
+
super(Encoder, self).__init__(**kwargs)
|
221 |
+
self.n = n
|
222 |
+
self.embed_dim = embed_dim
|
223 |
+
self.max_length = max_length
|
224 |
+
self.n_h = num_heads
|
225 |
+
self.f_d = ff_dim
|
226 |
+
self.rate = rate
|
227 |
+
self._layers = [EncoderBlock(i, embed_dim, num_heads, ff_dim, rate=0.1, name=f"enc_block_{i}") for i in range(n)]
|
228 |
+
self.pe = positional_encoding(self.max_length, self.embed_dim)
|
229 |
+
|
230 |
+
def get_config(self):
|
231 |
+
config = super(Encoder, self).get_config()
|
232 |
+
config.update({"n": self.n, "embed_dim":self.embed_dim, "max_length": self.max_length, "num_heads":self.n_h, "ff_dim":self.f_d, "rate":self.rate})
|
233 |
+
return config
|
234 |
+
|
235 |
+
def call(self, x, training=False):
|
236 |
+
x *= tf.math.sqrt(tf.cast(self.embed_dim, tf.float32))
|
237 |
+
x = x + self.pe[:, :tf.shape(x)[1], :]
|
238 |
+
for layer in self._layers:
|
239 |
+
x = layer(x, training)
|
240 |
+
return x
|
241 |
+
|
242 |
+
|
243 |
+
class Decoder(Layer):
|
244 |
+
def __init__(self, n, embed_dim, max_length, num_heads, ff_dim, rate=0.1, **kwargs):
|
245 |
+
super(Decoder, self).__init__(**kwargs)
|
246 |
+
self.n = n
|
247 |
+
self.embed_dim = embed_dim
|
248 |
+
self.max_length = max_length
|
249 |
+
self.n_h = num_heads
|
250 |
+
self.f_d = ff_dim
|
251 |
+
self.rate = rate
|
252 |
+
self._layers = [DecoderBlock(embed_dim, num_heads, ff_dim, rate=0.1) for _ in range(n)]
|
253 |
+
self.pe = positional_encoding(self.max_length, self.embed_dim)
|
254 |
+
|
255 |
+
def get_config(self):
|
256 |
+
config = super(Decoder, self).get_config()
|
257 |
+
config.update({"n": self.n, "embed_dim":self.embed_dim, "max_length": self.max_length, "num_heads":self.n_h, "ff_dim":self.f_d, "rate":self.rate})
|
258 |
+
return config
|
259 |
+
|
260 |
+
def call(self, x, encoder_output, look_ahead_mask, padding_mask, training):
|
261 |
+
x *= tf.math.sqrt(tf.cast(self.embed_dim, tf.float32))
|
262 |
+
x = x + self.pe[:, :tf.shape(x)[1], :]
|
263 |
+
|
264 |
+
for layer in self._layers:
|
265 |
+
x, self_att, enc_att = layer(x, encoder_output, look_ahead_mask, padding_mask, training)
|
266 |
+
|
267 |
+
return x
|
268 |
+
|
269 |
+
|
270 |
+
|
271 |
+
|
272 |
+
# =========================================
|
273 |
+
# M A S K S
|
274 |
+
# =========================================
|
275 |
+
def create_padding_mask(seq):
|
276 |
+
"""
|
277 |
+
For self-attention
|
278 |
+
seq shape(bs, max_length, emb_dim)
|
279 |
+
output shape (bs, max_length, max_length)
|
280 |
+
"""
|
281 |
+
mask = tf.cast(tf.not_equal(seq, 0), tf.bool)
|
282 |
+
mask = tf.reduce_any(mask, 2)
|
283 |
+
mask = tf.repeat(mask, seq.shape[1], 0)
|
284 |
+
mask = tf.reshape(mask, (-1,seq.shape[1], seq.shape[1]))
|
285 |
+
return tf.cast(mask, tf.float32)
|
286 |
+
|
287 |
+
|
288 |
+
def create_cross_padding_mask(seq, target_seq):
|
289 |
+
"""
|
290 |
+
For cross-attention
|
291 |
+
seq shape(bs, k, image_features)
|
292 |
+
target_seq(bs, max_length, emb_dim)
|
293 |
+
output shape (bs, max_length, k)
|
294 |
+
"""
|
295 |
+
mask = tf.cast(tf.not_equal(target_seq, 0), tf.bool)
|
296 |
+
mask = tf.reduce_any(mask, 2)
|
297 |
+
mask = tf.repeat(mask, seq.shape[1], 0)
|
298 |
+
mask = tf.reshape(mask, (-1, tf.shape(seq)[1], tf.shape(target_seq)[1]))
|
299 |
+
mask = tf.transpose(mask, [0, 2, 1])
|
300 |
+
return mask
|
301 |
+
|
302 |
+
|
303 |
+
def create_look_ahead_mask(seq):
|
304 |
+
"""
|
305 |
+
seq shape(bs, max_length, emb_dim)
|
306 |
+
output 2D matrix of shape (bs, max_length, max_length) with ones on the diagonal and below.
|
307 |
+
"""
|
308 |
+
size = seq.shape[1]
|
309 |
+
mask = tf.linalg.band_part(tf.ones((size, size)), -1, 0)
|
310 |
+
mask = tf.expand_dims(mask, 0)
|
311 |
+
mask = tf.repeat(mask, tf.shape(seq)[0], 0)
|
312 |
+
return mask
|
313 |
+
|
314 |
+
|
315 |
+
def create_masks(seq, target_seq):
|
316 |
+
decoder_mask = create_padding_mask(target_seq)
|
317 |
+
decoder_mask *= create_look_ahead_mask(target_seq)
|
318 |
+
cross_att_mask = create_cross_padding_mask(seq, target_seq)
|
319 |
+
return decoder_mask, cross_att_mask
|
320 |
+
|
321 |
+
|
322 |
+
def create_masks_looking_ahead(seq, target_seq):
|
323 |
+
decoder_mask = create_padding_mask(target_seq)
|
324 |
+
cross_att_mask = create_cross_padding_mask(seq, target_seq)
|
325 |
+
return decoder_mask, cross_att_mask
|
326 |
+
|
327 |
+
# =========================================
|
328 |
+
# P O S I T I O N A L E N C O D I N G
|
329 |
+
# =========================================
|
330 |
+
def get_angles(pos, i, d_model):
|
331 |
+
angle_rates = 1 / np.power(10000, (2 * (i//2)) / np.float32(d_model))
|
332 |
+
return pos * angle_rates
|
333 |
+
|
334 |
+
@tf.autograph.experimental.do_not_convert
|
335 |
+
def positional_encoding(position, d_model):
|
336 |
+
angle_rads = get_angles(np.arange(position)[:, np.newaxis],
|
337 |
+
np.arange(d_model)[np.newaxis, :],
|
338 |
+
d_model)
|
339 |
+
|
340 |
+
# apply sin to even indices in the array; 2i
|
341 |
+
angle_rads[:, 0::2] = np.sin(angle_rads[:, 0::2])
|
342 |
+
|
343 |
+
# apply cos to odd indices in the array; 2i+1
|
344 |
+
angle_rads[:, 1::2] = np.cos(angle_rads[:, 1::2])
|
345 |
+
|
346 |
+
pos_encoding = angle_rads[np.newaxis, ...]
|
347 |
+
|
348 |
+
return tf.cast(pos_encoding, dtype=tf.float32)
|
349 |
+
|
350 |
+
class PatchEncoder(Layer):
|
351 |
+
def __init__(self, num_patches, projection_dim, **kwargs):
|
352 |
+
super(PatchEncoder, self).__init__(**kwargs)
|
353 |
+
self.num_patches = num_patches
|
354 |
+
self.projection_dim = projection_dim
|
355 |
+
self.projection = Dense(units=projection_dim)
|
356 |
+
self.position_embedding = Embedding(
|
357 |
+
input_dim=num_patches, output_dim=projection_dim
|
358 |
+
)
|
359 |
+
|
360 |
+
def get_config(self):
|
361 |
+
config = super(PatchEncoder, self).get_config()
|
362 |
+
config.update({"num_patches": self.num_patches, "projection_dim":self.projection_dim})
|
363 |
+
return config
|
364 |
+
|
365 |
+
def call(self, patch):
|
366 |
+
positions = tf.range(start=0, limit=self.num_patches, delta=1)
|
367 |
+
encoded = self.projection(patch) + self.position_embedding(positions)
|
368 |
+
return encoded
|
369 |
+
|
370 |
+
|
371 |
+
|
372 |
+
|
373 |
+
|
374 |
+
|
375 |
+
|
376 |
+
|
377 |
+
|
378 |
+
|
379 |
+
|
380 |
+
|
tf_model.h5
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:790cb53d9fd4962894430ecffffd94e2bf26c4d84a509ff76f16491b4bb30ed8
|
3 |
+
size 156875820
|