File size: 17,136 Bytes
108bd5c 826bd48 0444e15 108bd5c 826bd48 108bd5c 826bd48 108bd5c e069e5c 826bd48 108bd5c 826bd48 108bd5c e069e5c 108bd5c e069e5c 108bd5c 826bd48 fe87143 108bd5c 826bd48 108bd5c 826bd48 108bd5c 826bd48 108bd5c 826bd48 108bd5c 826bd48 108bd5c 826bd48 108bd5c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 |
---
language: en
license: cc-by-sa-4.0
library_name: span-marker
tags:
- span-marker
- token-classification
- ner
- named-entity-recognition
- generated_from_span_marker_trainer
datasets:
- DFKI-SLT/few-nerd
metrics:
- precision
- recall
- f1
widget:
- text: The WPC led the international peace movement in the decade after the Second
World War, but its failure to speak out against the Soviet suppression of the
1956 Hungarian uprising and the resumption of Soviet nuclear tests in 1961 marginalised
it, and in the 1960s it was eclipsed by the newer, non-aligned peace organizations
like the Campaign for Nuclear Disarmament.
- text: Most of the Steven Seagal movie "Under Siege "(co-starring Tommy Lee Jones)
was filmed on the, which is docked on Mobile Bay at Battleship Memorial Park and
open to the public.
- text: 'The Central African CFA franc (French: "franc CFA "or simply "franc ", ISO
4217 code: XAF) is the currency of six independent states in Central Africa: Cameroon,
Central African Republic, Chad, Republic of the Congo, Equatorial Guinea and Gabon.'
- text: Brenner conducted post-doctoral research at Brandeis University with Gregory
Petsko and then took his first academic position at Thomas Jefferson University
in 1996, moving to Dartmouth Medical School in 2003, where he served as Associate
Director for Basic Sciences at Norris Cotton Cancer Center.
- text: On Friday, October 27, 2017, the Senate of Spain (Senado) voted 214 to 47
to invoke Article 155 of the Spanish Constitution over Catalonia after the Catalan
Parliament declared the independence.
pipeline_tag: token-classification
base_model: numind/generic-entity_recognition_NER-v1
model-index:
- name: SpanMarker with numind/generic-entity_recognition-v1 on FewNERD
results:
- task:
type: token-classification
name: Named Entity Recognition
dataset:
name: FewNERD
type: DFKI-SLT/few-nerd
split: eval
metrics:
- type: f1
value: 0.7039859923782059
name: F1
- type: precision
value: 0.7047408904377952
name: Precision
- type: recall
value: 0.7032327098380559
name: Recall
---
# SpanMarker with numind/generic-entity_recognition-v1 on FewNERD
This is a [SpanMarker](https://github.com/tomaarsen/SpanMarkerNER) model trained on the [FewNERD](https://huggingface.co/datasets/DFKI-SLT/few-nerd) dataset that can be used for Named Entity Recognition. This SpanMarker model uses [numind/generic-entity_recognition_NER-v1](https://huggingface.co/numind/generic-entity_recognition_NER-v1) as the underlying encoder.
## Model Details
### Model Description
- **Model Type:** SpanMarker
- **Encoder:** [numind/generic-entity_recognition_NER-v1](https://huggingface.co/numind/generic-entity_recognition_NER-v1)
- **Maximum Sequence Length:** 256 tokens
- **Maximum Entity Length:** 8 words
- **Training Dataset:** [FewNERD](https://huggingface.co/datasets/DFKI-SLT/few-nerd)
- **Language:** en
- **License:** cc-by-sa-4.0
### Model Sources
- **Repository:** [SpanMarker on GitHub](https://github.com/tomaarsen/SpanMarkerNER)
- **Thesis:** [SpanMarker For Named Entity Recognition](https://raw.githubusercontent.com/tomaarsen/SpanMarkerNER/main/thesis.pdf)
### Model Labels
| Label | Examples |
|:-----------------------------------------|:---------------------------------------------------------------------------------------------------------|
| art-broadcastprogram | "Corazones", "The Gale Storm Show : Oh , Susanna", "Street Cents" |
| art-film | "Shawshank Redemption", "L'Atlantide", "Bosch" |
| art-music | "Hollywood Studio Symphony", "Atkinson , Danko and Ford ( with Brockie and Hilton )", "Champion Lover" |
| art-other | "The Today Show", "Venus de Milo", "Aphrodite of Milos" |
| art-painting | "Production/Reproduction", "Touit", "Cofiwch Dryweryn" |
| art-writtenart | "The Seven Year Itch", "Imelda de ' Lambertazzi", "Time" |
| building-airport | "Sheremetyevo International Airport", "Newark Liberty International Airport", "Luton Airport" |
| building-hospital | "Yeungnam University Hospital", "Hokkaido University Hospital", "Memorial Sloan-Kettering Cancer Center" |
| building-hotel | "The Standard Hotel", "Flamingo Hotel", "Radisson Blu Sea Plaza Hotel" |
| building-library | "British Library", "Bayerische Staatsbibliothek", "Berlin State Library" |
| building-other | "Henry Ford Museum", "Alpha Recording Studios", "Communiplex" |
| building-restaurant | "Carnegie Deli", "Fatburger", "Trumbull" |
| building-sportsfacility | "Boston Garden", "Sports Center", "Glenn Warner Soccer Facility" |
| building-theater | "Sanders Theatre", "National Paris Opera", "Pittsburgh Civic Light Opera" |
| event-attack/battle/war/militaryconflict | "Easter Offensive", "Jurist", "Vietnam War" |
| event-disaster | "the 1912 North Mount Lyell Disaster", "1990s North Korean famine", "1693 Sicily earthquake" |
| event-election | "Elections to the European Parliament", "March 1898 elections", "1982 Mitcham and Morden by-election" |
| event-other | "Union for a Popular Movement", "Masaryk Democratic Movement", "Eastwood Scoring Stage" |
| event-protest | "Iranian Constitutional Revolution", "French Revolution", "Russian Revolution" |
| event-sportsevent | "World Cup", "National Champions", "Stanley Cup" |
| location-GPE | "Croatian", "Mediterranean Basin", "the Republic of Croatia" |
| location-bodiesofwater | "Arthur Kill", "Atatürk Dam Lake", "Norfolk coast" |
| location-island | "new Samsat district", "Laccadives", "Staten Island" |
| location-mountain | "Salamander Glacier", "Miteirya Ridge", "Ruweisat Ridge" |
| location-other | "Victoria line", "Northern City Line", "Cartuther" |
| location-park | "Painted Desert Community Complex Historic District", "Gramercy Park", "Shenandoah National Park" |
| location-road/railway/highway/transit | "NJT", "Newark-Elizabeth Rail Link", "Friern Barnet Road" |
| organization-company | "Texas Chicken", "Dixy Chicken", "Church 's Chicken" |
| organization-education | "MIT", "Belfast Royal Academy and the Ulster College of Physical Education", "Barnard College" |
| organization-government/governmentagency | "Congregazione dei Nobili", "Diet", "Supreme Court" |
| organization-media/newspaper | "Clash", "Al Jazeera", "TimeOut Melbourne" |
| organization-other | "Defence Sector C", "IAEA", "4th Army" |
| organization-politicalparty | "Al Wafa ' Islamic", "Shimpotō", "Kenseitō" |
| organization-religion | "UPCUSA", "Christian", "Jewish" |
| organization-showorganization | "Lizzy", "Bochumer Symphoniker", "Mr. Mister" |
| organization-sportsleague | "China League One", "NHL", "First Division" |
| organization-sportsteam | "Arsenal", "Luc Alphand Aventures", "Tottenham" |
| other-astronomything | "Algol", "`` Caput Larvae ''", "Zodiac" |
| other-award | "Order of the Republic of Guinea and Nigeria", "Grand Commander of the Order of the Niger", "GCON" |
| other-biologything | "N-terminal lipid", "Amphiphysin", "BAR" |
| other-chemicalthing | "uranium", "carbon dioxide", "sulfur" |
| other-currency | "$", "lac crore", "Travancore Rupee" |
| other-disease | "bladder cancer", "French Dysentery Epidemic of 1779", "hypothyroidism" |
| other-educationaldegree | "BSc ( Hons ) in physics", "Bachelor", "Master" |
| other-god | "Raijin", "Fujin", "El" |
| other-language | "Breton-speaking", "Latin", "English" |
| other-law | "Leahy–Smith America Invents Act ( AIA", "United States Freedom Support Act", "Thirty Years ' Peace" |
| other-livingthing | "monkeys", "patchouli", "insects" |
| other-medical | "amitriptyline", "Pediatrics", "pediatrician" |
| person-actor | "Tchéky Karyo", "Edmund Payne", "Ellaline Terriss" |
| person-artist/author | "Hicks", "Gaetano Donizett", "George Axelrod" |
| person-athlete | "Tozawa", "Neville", "Jaguar" |
| person-director | "Richard Quine", "Bob Swaim", "Frank Darabont" |
| person-other | "Campbell", "Holden", "Richard Benson" |
| person-politician | "William", "Rivière", "Emeric" |
| person-scholar | "Wurdack", "Stalmine", "Stedman" |
| person-soldier | "Joachim Ziegler", "Helmuth Weidling", "Krukenberg" |
| product-airplane | "Spey-equipped FGR.2s", "EC135T2 CPDS", "Luton" |
| product-car | "Phantom", "100EX", "Corvettes - GT1 C6R" |
| product-food | "red grape", "yakiniku", "V. labrusca" |
| product-game | "Hardcore RPG", "Splinter Cell", "Airforce Delta" |
| product-other | "X11", "PDP-1", "Fairbottom Bobs" |
| product-ship | "Essex", "Congress", "HMS `` Chinkara ''" |
| product-software | "AmiPDF", "Wikipedia", "Apdf" |
| product-train | "55022", "Royal Scots Grey", "High Speed Trains" |
| product-weapon | "AR-15 's", "ZU-23-2MR Wróbel II", "ZU-23-2M Wróbel" |
## Uses
### Direct Use for Inference
```python
from span_marker import SpanMarkerModel
# Download from the 🤗 Hub
model = SpanMarkerModel.from_pretrained("guishe/span-marker-generic-entity_recognition-v1-fewnerd-fine-super")
# Run inference
entities = model.predict("Most of the Steven Seagal movie \"Under Siege \"(co-starring Tommy Lee Jones) was filmed on the, which is docked on Mobile Bay at Battleship Memorial Park and open to the public.")
```
### Downstream Use
You can finetune this model on your own dataset.
<details><summary>Click to expand</summary>
```python
from span_marker import SpanMarkerModel, Trainer
# Download from the 🤗 Hub
model = SpanMarkerModel.from_pretrained("guishe/span-marker-generic-entity_recognition-v1-fewnerd-fine-super")
# Specify a Dataset with "tokens" and "ner_tag" columns
dataset = load_dataset("conll2003") # For example CoNLL2003
# Initialize a Trainer using the pretrained model & dataset
trainer = Trainer(
model=model,
train_dataset=dataset["train"],
eval_dataset=dataset["validation"],
)
trainer.train()
trainer.save_model("guishe/span-marker-generic-entity_recognition-v1-fewnerd-fine-super-finetuned")
```
</details>
## Training Details
### Training Set Metrics
| Training set | Min | Median | Max |
|:----------------------|:----|:--------|:----|
| Sentence length | 1 | 24.4945 | 267 |
| Entities per sentence | 0 | 2.5832 | 88 |
### Training Hyperparameters
- learning_rate: 1e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 3
### Training Results
| Epoch | Step | Validation Loss | Validation Precision | Validation Recall | Validation F1 | Validation Accuracy |
|:------:|:-----:|:---------------:|:--------------------:|:-----------------:|:-------------:|:-------------------:|
| 0.2980 | 3000 | 0.0290 | 0.6503 | 0.6402 | 0.6452 | 0.9109 |
| 0.5961 | 6000 | 0.0250 | 0.6749 | 0.6794 | 0.6772 | 0.9202 |
| 0.8941 | 9000 | 0.0236 | 0.6908 | 0.6871 | 0.6889 | 0.9229 |
| 1.1921 | 12000 | 0.0234 | 0.6853 | 0.7007 | 0.6929 | 0.9239 |
| 1.4902 | 15000 | 0.0227 | 0.6966 | 0.6929 | 0.6948 | 0.9241 |
| 1.7882 | 18000 | 0.0221 | 0.7073 | 0.6922 | 0.6997 | 0.9250 |
| 2.0862 | 21000 | 0.0223 | 0.7003 | 0.6993 | 0.6998 | 0.9252 |
| 2.3843 | 24000 | 0.0222 | 0.6971 | 0.7027 | 0.6999 | 0.9254 |
| 2.6823 | 27000 | 0.0219 | 0.7044 | 0.7004 | 0.7024 | 0.9259 |
| 2.9803 | 30000 | 0.0219 | 0.7047 | 0.7032 | 0.7040 | 0.9261 |
### Framework Versions
- Python: 3.10.8
- SpanMarker: 1.5.0
- Transformers: 4.28.0
- PyTorch: 1.13.1+cu117
- Datasets: 2.14.4
- Tokenizers: 0.13.3
## Citation
### BibTeX
```
@software{Aarsen_SpanMarker,
author = {Aarsen, Tom},
license = {Apache-2.0},
title = {{SpanMarker for Named Entity Recognition}},
url = {https://github.com/tomaarsen/SpanMarkerNER}
}
```
|