File size: 17,119 Bytes
108bd5c
826bd48
 
108bd5c
 
 
 
 
 
 
826bd48
 
108bd5c
 
 
 
826bd48
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
108bd5c
826bd48
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
108bd5c
 
826bd48
108bd5c
826bd48
108bd5c
 
 
 
 
826bd48
108bd5c
 
826bd48
 
fe87143
108bd5c
 
 
 
 
 
826bd48
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
108bd5c
 
 
 
 
 
 
 
826bd48
108bd5c
826bd48
108bd5c
 
 
 
 
 
 
 
 
 
 
826bd48
108bd5c
 
 
 
 
 
 
 
 
 
 
826bd48
108bd5c
 
 
 
 
 
826bd48
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
108bd5c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
---
language: en
license: cc-by-nc-sa-4.0
library_name: span-marker
tags:
- span-marker
- token-classification
- ner
- named-entity-recognition
- generated_from_span_marker_trainer
datasets:
- DFKI-SLT/few-nerd
metrics:
- precision
- recall
- f1
widget:
- text: The WPC led the international peace movement in the decade after the Second
    World War, but its failure to speak out against the Soviet suppression of the
    1956 Hungarian uprising and the resumption of Soviet nuclear tests in 1961 marginalised
    it, and in the 1960s it was eclipsed by the newer, non-aligned peace organizations
    like the Campaign for Nuclear Disarmament.
- text: Most of the Steven Seagal movie "Under Siege "(co-starring Tommy Lee Jones)
    was filmed on the, which is docked on Mobile Bay at Battleship Memorial Park and
    open to the public.
- text: 'The Central African CFA franc (French: "franc CFA "or simply "franc ", ISO
    4217 code: XAF) is the currency of six independent states in Central Africa: Cameroon,
    Central African Republic, Chad, Republic of the Congo, Equatorial Guinea and Gabon.'
- text: Brenner conducted post-doctoral research at Brandeis University with Gregory
    Petsko and then took his first academic position at Thomas Jefferson University
    in 1996, moving to Dartmouth Medical School in 2003, where he served as Associate
    Director for Basic Sciences at Norris Cotton Cancer Center.
- text: On Friday, October 27, 2017, the Senate of Spain (Senado) voted 214 to 47
    to invoke Article 155 of the Spanish Constitution over Catalonia after the Catalan
    Parliament declared the independence.
pipeline_tag: token-classification
base_model: numind/generic-entity_recognition-v1
model-index:
- name: SpanMarker with numind/generic-entity_recognition-v1 on FewNERD
  results:
  - task:
      type: token-classification
      name: Named Entity Recognition
    dataset:
      name: FewNERD
      type: DFKI-SLT/few-nerd
      split: eval
    metrics:
    - type: f1
      value: 0.7039859923782059
      name: F1
    - type: precision
      value: 0.7047408904377952
      name: Precision
    - type: recall
      value: 0.7032327098380559
      name: Recall
---

# SpanMarker with numind/generic-entity_recognition-v1 on FewNERD

This is a [SpanMarker](https://github.com/tomaarsen/SpanMarkerNER) model trained on the [FewNERD](https://huggingface.co/datasets/DFKI-SLT/few-nerd) dataset that can be used for Named Entity Recognition. This SpanMarker model uses [numind/generic-entity_recognition-v1](https://huggingface.co/numind/generic-entity_recognition-v1) as the underlying encoder.

## Model Details

### Model Description
- **Model Type:** SpanMarker
- **Encoder:** [numind/generic-entity_recognition-v1](https://huggingface.co/numind/generic-entity_recognition-v1)
- **Maximum Sequence Length:** 256 tokens
- **Maximum Entity Length:** 8 words
- **Training Dataset:** [FewNERD](https://huggingface.co/datasets/DFKI-SLT/few-nerd)
- **Language:** en
- **License:** cc-by-sa-4.0

### Model Sources

- **Repository:** [SpanMarker on GitHub](https://github.com/tomaarsen/SpanMarkerNER)
- **Thesis:** [SpanMarker For Named Entity Recognition](https://raw.githubusercontent.com/tomaarsen/SpanMarkerNER/main/thesis.pdf)

### Model Labels
| Label                                    | Examples                                                                                                 |
|:-----------------------------------------|:---------------------------------------------------------------------------------------------------------|
| art-broadcastprogram                     | "Corazones", "The Gale Storm Show : Oh , Susanna", "Street Cents"                                        |
| art-film                                 | "Shawshank Redemption", "L'Atlantide", "Bosch"                                                           |
| art-music                                | "Hollywood Studio Symphony", "Atkinson , Danko and Ford ( with Brockie and Hilton )", "Champion Lover"   |
| art-other                                | "The Today Show", "Venus de Milo", "Aphrodite of Milos"                                                  |
| art-painting                             | "Production/Reproduction", "Touit", "Cofiwch Dryweryn"                                                   |
| art-writtenart                           | "The Seven Year Itch", "Imelda de ' Lambertazzi", "Time"                                                 |
| building-airport                         | "Sheremetyevo International Airport", "Newark Liberty International Airport", "Luton Airport"            |
| building-hospital                        | "Yeungnam University Hospital", "Hokkaido University Hospital", "Memorial Sloan-Kettering Cancer Center" |
| building-hotel                           | "The Standard Hotel", "Flamingo Hotel", "Radisson Blu Sea Plaza Hotel"                                   |
| building-library                         | "British Library", "Bayerische Staatsbibliothek", "Berlin State Library"                                 |
| building-other                           | "Henry Ford Museum", "Alpha Recording Studios", "Communiplex"                                            |
| building-restaurant                      | "Carnegie Deli", "Fatburger", "Trumbull"                                                                 |
| building-sportsfacility                  | "Boston Garden", "Sports Center", "Glenn Warner Soccer Facility"                                         |
| building-theater                         | "Sanders Theatre", "National Paris Opera", "Pittsburgh Civic Light Opera"                                |
| event-attack/battle/war/militaryconflict | "Easter Offensive", "Jurist", "Vietnam War"                                                              |
| event-disaster                           | "the 1912 North Mount Lyell Disaster", "1990s North Korean famine", "1693 Sicily earthquake"             |
| event-election                           | "Elections to the European Parliament", "March 1898 elections", "1982 Mitcham and Morden by-election"    |
| event-other                              | "Union for a Popular Movement", "Masaryk Democratic Movement", "Eastwood Scoring Stage"                  |
| event-protest                            | "Iranian Constitutional Revolution", "French Revolution", "Russian Revolution"                           |
| event-sportsevent                        | "World Cup", "National Champions", "Stanley Cup"                                                         |
| location-GPE                             | "Croatian", "Mediterranean Basin", "the Republic of Croatia"                                             |
| location-bodiesofwater                   | "Arthur Kill", "Atatürk Dam Lake", "Norfolk coast"                                                       |
| location-island                          | "new Samsat district", "Laccadives", "Staten Island"                                                     |
| location-mountain                        | "Salamander Glacier", "Miteirya Ridge", "Ruweisat Ridge"                                                 |
| location-other                           | "Victoria line", "Northern City Line", "Cartuther"                                                       |
| location-park                            | "Painted Desert Community Complex Historic District", "Gramercy Park", "Shenandoah National Park"        |
| location-road/railway/highway/transit    | "NJT", "Newark-Elizabeth Rail Link", "Friern Barnet Road"                                                |
| organization-company                     | "Texas Chicken", "Dixy Chicken", "Church 's Chicken"                                                     |
| organization-education                   | "MIT", "Belfast Royal Academy and the Ulster College of Physical Education", "Barnard College"           |
| organization-government/governmentagency | "Congregazione dei Nobili", "Diet", "Supreme Court"                                                      |
| organization-media/newspaper             | "Clash", "Al Jazeera", "TimeOut Melbourne"                                                               |
| organization-other                       | "Defence Sector C", "IAEA", "4th Army"                                                                   |
| organization-politicalparty              | "Al Wafa ' Islamic", "Shimpotō", "Kenseitō"                                                              |
| organization-religion                    | "UPCUSA", "Christian", "Jewish"                                                                          |
| organization-showorganization            | "Lizzy", "Bochumer Symphoniker", "Mr. Mister"                                                            |
| organization-sportsleague                | "China League One", "NHL", "First Division"                                                              |
| organization-sportsteam                  | "Arsenal", "Luc Alphand Aventures", "Tottenham"                                                          |
| other-astronomything                     | "Algol", "`` Caput Larvae ''", "Zodiac"                                                                  |
| other-award                              | "Order of the Republic of Guinea and Nigeria", "Grand Commander of the Order of the Niger", "GCON"       |
| other-biologything                       | "N-terminal lipid", "Amphiphysin", "BAR"                                                                 |
| other-chemicalthing                      | "uranium", "carbon dioxide", "sulfur"                                                                    |
| other-currency                           | "$", "lac crore", "Travancore Rupee"                                                                     |
| other-disease                            | "bladder cancer", "French Dysentery Epidemic of 1779", "hypothyroidism"                                  |
| other-educationaldegree                  | "BSc ( Hons ) in physics", "Bachelor", "Master"                                                          |
| other-god                                | "Raijin", "Fujin", "El"                                                                                  |
| other-language                           | "Breton-speaking", "Latin", "English"                                                                    |
| other-law                                | "Leahy–Smith America Invents Act ( AIA", "United States Freedom Support Act", "Thirty Years ' Peace"     |
| other-livingthing                        | "monkeys", "patchouli", "insects"                                                                        |
| other-medical                            | "amitriptyline", "Pediatrics", "pediatrician"                                                            |
| person-actor                             | "Tchéky Karyo", "Edmund Payne", "Ellaline Terriss"                                                       |
| person-artist/author                     | "Hicks", "Gaetano Donizett", "George Axelrod"                                                            |
| person-athlete                           | "Tozawa", "Neville", "Jaguar"                                                                            |
| person-director                          | "Richard Quine", "Bob Swaim", "Frank Darabont"                                                           |
| person-other                             | "Campbell", "Holden", "Richard Benson"                                                                   |
| person-politician                        | "William", "Rivière", "Emeric"                                                                           |
| person-scholar                           | "Wurdack", "Stalmine", "Stedman"                                                                         |
| person-soldier                           | "Joachim Ziegler", "Helmuth Weidling", "Krukenberg"                                                      |
| product-airplane                         | "Spey-equipped FGR.2s", "EC135T2 CPDS", "Luton"                                                          |
| product-car                              | "Phantom", "100EX", "Corvettes - GT1 C6R"                                                                |
| product-food                             | "red grape", "yakiniku", "V. labrusca"                                                                   |
| product-game                             | "Hardcore RPG", "Splinter Cell", "Airforce Delta"                                                        |
| product-other                            | "X11", "PDP-1", "Fairbottom Bobs"                                                                        |
| product-ship                             | "Essex", "Congress", "HMS `` Chinkara ''"                                                                |
| product-software                         | "AmiPDF", "Wikipedia", "Apdf"                                                                            |
| product-train                            | "55022", "Royal Scots Grey", "High Speed Trains"                                                         |
| product-weapon                           | "AR-15 's", "ZU-23-2MR Wróbel II", "ZU-23-2M Wróbel"                                                     |

## Uses

### Direct Use for Inference

```python
from span_marker import SpanMarkerModel

# Download from the 🤗 Hub
model = SpanMarkerModel.from_pretrained("guishe/span-marker-generic-entity_recognition-v1-fewnerd-fine-super")
# Run inference
entities = model.predict("Most of the Steven Seagal movie \"Under Siege \"(co-starring Tommy Lee Jones) was filmed on the, which is docked on Mobile Bay at Battleship Memorial Park and open to the public.")
```

### Downstream Use
You can finetune this model on your own dataset.

<details><summary>Click to expand</summary>

```python
from span_marker import SpanMarkerModel, Trainer

# Download from the 🤗 Hub
model = SpanMarkerModel.from_pretrained("guishe/span-marker-generic-entity_recognition-v1-fewnerd-fine-super")

# Specify a Dataset with "tokens" and "ner_tag" columns
dataset = load_dataset("conll2003") # For example CoNLL2003

# Initialize a Trainer using the pretrained model & dataset
trainer = Trainer(
    model=model,
    train_dataset=dataset["train"],
    eval_dataset=dataset["validation"],
)
trainer.train()
trainer.save_model("guishe/span-marker-generic-entity_recognition-v1-fewnerd-fine-super-finetuned")
```
</details>


## Training Details

### Training Set Metrics
| Training set          | Min | Median  | Max |
|:----------------------|:----|:--------|:----|
| Sentence length       | 1   | 24.4945 | 267 |
| Entities per sentence | 0   | 2.5832  | 88  |

### Training Hyperparameters
- learning_rate: 1e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 3

### Training Results
| Epoch  | Step  | Validation Loss | Validation Precision | Validation Recall | Validation F1 | Validation Accuracy |
|:------:|:-----:|:---------------:|:--------------------:|:-----------------:|:-------------:|:-------------------:|
| 0.2980 | 3000  | 0.0290          | 0.6503               | 0.6402            | 0.6452        | 0.9109              |
| 0.5961 | 6000  | 0.0250          | 0.6749               | 0.6794            | 0.6772        | 0.9202              |
| 0.8941 | 9000  | 0.0236          | 0.6908               | 0.6871            | 0.6889        | 0.9229              |
| 1.1921 | 12000 | 0.0234          | 0.6853               | 0.7007            | 0.6929        | 0.9239              |
| 1.4902 | 15000 | 0.0227          | 0.6966               | 0.6929            | 0.6948        | 0.9241              |
| 1.7882 | 18000 | 0.0221          | 0.7073               | 0.6922            | 0.6997        | 0.9250              |
| 2.0862 | 21000 | 0.0223          | 0.7003               | 0.6993            | 0.6998        | 0.9252              |
| 2.3843 | 24000 | 0.0222          | 0.6971               | 0.7027            | 0.6999        | 0.9254              |
| 2.6823 | 27000 | 0.0219          | 0.7044               | 0.7004            | 0.7024        | 0.9259              |
| 2.9803 | 30000 | 0.0219          | 0.7047               | 0.7032            | 0.7040        | 0.9261              |

### Framework Versions
- Python: 3.10.8
- SpanMarker: 1.5.0
- Transformers: 4.28.0
- PyTorch: 1.13.1+cu117
- Datasets: 2.14.4
- Tokenizers: 0.13.3

## Citation

### BibTeX
```
@software{Aarsen_SpanMarker,
    author = {Aarsen, Tom},
    license = {Apache-2.0},
    title = {{SpanMarker for Named Entity Recognition}},
    url = {https://github.com/tomaarsen/SpanMarkerNER}
}
```