File size: 21,153 Bytes
45be9e6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 |
{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"id": "6363d4dd-5c18-4652-b682-bf54a468aae5",
"metadata": {},
"outputs": [],
"source": [
"import torch\n",
"from safetensors import safe_open\n",
"from safetensors.torch import save_file\n",
"\n",
"# ๅ ่ฝฝ safetensors ๆไปถ\n",
"model_path = \"model.safetensors\"\n",
"with safe_open(model_path, framework=\"pt\", device=\"cpu\") as f:\n",
" state_dict = {key: f.get_tensor(key) for key in f.keys()}\n",
"\n",
"# ๅฐ BF16 ่ฝฌๆขไธบ FP16\n",
"fp16_state_dict = {key: value.to(torch.float16) for key, value in state_dict.items()}\n",
"\n",
"# ไฟๅญไธบๆฐ็ safetensors ๆไปถ\n",
"output_path = \"model_fp16.safetensors\"\n",
"save_file(fp16_state_dict, output_path)"
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "9aa60eaa-883a-465e-958a-3280e0439f66",
"metadata": {},
"outputs": [
{
"ename": "PackageNotFoundError",
"evalue": "No package metadata was found for auto-gptq",
"output_type": "error",
"traceback": [
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
"\u001b[0;31mStopIteration\u001b[0m Traceback (most recent call last)",
"File \u001b[0;32m~/miniconda3/lib/python3.12/importlib/metadata/__init__.py:397\u001b[0m, in \u001b[0;36mDistribution.from_name\u001b[0;34m(cls, name)\u001b[0m\n\u001b[1;32m 396\u001b[0m \u001b[38;5;28;01mtry\u001b[39;00m:\n\u001b[0;32m--> 397\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28;43mnext\u001b[39;49m\u001b[43m(\u001b[49m\u001b[38;5;28;43mcls\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mdiscover\u001b[49m\u001b[43m(\u001b[49m\u001b[43mname\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mname\u001b[49m\u001b[43m)\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 398\u001b[0m \u001b[38;5;28;01mexcept\u001b[39;00m \u001b[38;5;167;01mStopIteration\u001b[39;00m:\n",
"\u001b[0;31mStopIteration\u001b[0m: ",
"\nDuring handling of the above exception, another exception occurred:\n",
"\u001b[0;31mPackageNotFoundError\u001b[0m Traceback (most recent call last)",
"Cell \u001b[0;32mIn[4], line 7\u001b[0m\n\u001b[1;32m 4\u001b[0m model_path \u001b[38;5;241m=\u001b[39m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124m./\u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[1;32m 6\u001b[0m \u001b[38;5;66;03m# ๅ ่ฝฝๆจกๅ๏ผๆพๅผๆๅฎ torch_dtype\u001b[39;00m\n\u001b[0;32m----> 7\u001b[0m model \u001b[38;5;241m=\u001b[39m \u001b[43mAutoModelForCausalLM\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mfrom_pretrained\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 8\u001b[0m \u001b[43m \u001b[49m\u001b[43mmodel_path\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 9\u001b[0m \u001b[43m \u001b[49m\u001b[43mtorch_dtype\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mtorch\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mfloat16\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;66;43;03m# ๆ torch.float16๏ผไธๆ้ไธ่ด\u001b[39;49;00m\n\u001b[1;32m 10\u001b[0m \u001b[43m \u001b[49m\u001b[43mdevice_map\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mauto\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m \u001b[49m\u001b[38;5;66;43;03m# ๅฏ้๏ผ่ชๅจๅ้
่ฎพๅค\u001b[39;49;00m\n\u001b[1;32m 11\u001b[0m \u001b[43m)\u001b[49m\n\u001b[1;32m 13\u001b[0m \u001b[38;5;66;03m# ๅ ่ฝฝๅ่ฏๅจ\u001b[39;00m\n\u001b[1;32m 14\u001b[0m tokenizer \u001b[38;5;241m=\u001b[39m AutoTokenizer\u001b[38;5;241m.\u001b[39mfrom_pretrained(model_path)\n",
"File \u001b[0;32m~/miniconda3/lib/python3.12/site-packages/transformers/models/auto/auto_factory.py:564\u001b[0m, in \u001b[0;36m_BaseAutoModelClass.from_pretrained\u001b[0;34m(cls, pretrained_model_name_or_path, *model_args, **kwargs)\u001b[0m\n\u001b[1;32m 562\u001b[0m \u001b[38;5;28;01melif\u001b[39;00m \u001b[38;5;28mtype\u001b[39m(config) \u001b[38;5;129;01min\u001b[39;00m \u001b[38;5;28mcls\u001b[39m\u001b[38;5;241m.\u001b[39m_model_mapping\u001b[38;5;241m.\u001b[39mkeys():\n\u001b[1;32m 563\u001b[0m model_class \u001b[38;5;241m=\u001b[39m _get_model_class(config, \u001b[38;5;28mcls\u001b[39m\u001b[38;5;241m.\u001b[39m_model_mapping)\n\u001b[0;32m--> 564\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43mmodel_class\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mfrom_pretrained\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 565\u001b[0m \u001b[43m \u001b[49m\u001b[43mpretrained_model_name_or_path\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mmodel_args\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mconfig\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mconfig\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mhub_kwargs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\n\u001b[1;32m 566\u001b[0m \u001b[43m \u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 567\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m \u001b[38;5;167;01mValueError\u001b[39;00m(\n\u001b[1;32m 568\u001b[0m \u001b[38;5;124mf\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mUnrecognized configuration class \u001b[39m\u001b[38;5;132;01m{\u001b[39;00mconfig\u001b[38;5;241m.\u001b[39m\u001b[38;5;18m__class__\u001b[39m\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m for this kind of AutoModel: \u001b[39m\u001b[38;5;132;01m{\u001b[39;00m\u001b[38;5;28mcls\u001b[39m\u001b[38;5;241m.\u001b[39m\u001b[38;5;18m__name__\u001b[39m\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m.\u001b[39m\u001b[38;5;130;01m\\n\u001b[39;00m\u001b[38;5;124m\"\u001b[39m\n\u001b[1;32m 569\u001b[0m \u001b[38;5;124mf\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mModel type should be one of \u001b[39m\u001b[38;5;132;01m{\u001b[39;00m\u001b[38;5;124m'\u001b[39m\u001b[38;5;124m, \u001b[39m\u001b[38;5;124m'\u001b[39m\u001b[38;5;241m.\u001b[39mjoin(c\u001b[38;5;241m.\u001b[39m\u001b[38;5;18m__name__\u001b[39m\u001b[38;5;250m \u001b[39m\u001b[38;5;28;01mfor\u001b[39;00m\u001b[38;5;250m \u001b[39mc\u001b[38;5;250m \u001b[39m\u001b[38;5;129;01min\u001b[39;00m\u001b[38;5;250m \u001b[39m\u001b[38;5;28mcls\u001b[39m\u001b[38;5;241m.\u001b[39m_model_mapping\u001b[38;5;241m.\u001b[39mkeys())\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m.\u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[1;32m 570\u001b[0m )\n",
"File \u001b[0;32m~/miniconda3/lib/python3.12/site-packages/transformers/modeling_utils.py:3669\u001b[0m, in \u001b[0;36mPreTrainedModel.from_pretrained\u001b[0;34m(cls, pretrained_model_name_or_path, config, cache_dir, ignore_mismatched_sizes, force_download, local_files_only, token, revision, use_safetensors, weights_only, *model_args, **kwargs)\u001b[0m\n\u001b[1;32m 3666\u001b[0m hf_quantizer \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;01mNone\u001b[39;00m\n\u001b[1;32m 3668\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m hf_quantizer \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m:\n\u001b[0;32m-> 3669\u001b[0m \u001b[43mhf_quantizer\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mvalidate_environment\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 3670\u001b[0m \u001b[43m \u001b[49m\u001b[43mtorch_dtype\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mtorch_dtype\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 3671\u001b[0m \u001b[43m \u001b[49m\u001b[43mfrom_tf\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mfrom_tf\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 3672\u001b[0m \u001b[43m \u001b[49m\u001b[43mfrom_flax\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mfrom_flax\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 3673\u001b[0m \u001b[43m \u001b[49m\u001b[43mdevice_map\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mdevice_map\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 3674\u001b[0m \u001b[43m \u001b[49m\u001b[43mweights_only\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mweights_only\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 3675\u001b[0m \u001b[43m \u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 3676\u001b[0m torch_dtype \u001b[38;5;241m=\u001b[39m hf_quantizer\u001b[38;5;241m.\u001b[39mupdate_torch_dtype(torch_dtype)\n\u001b[1;32m 3677\u001b[0m device_map \u001b[38;5;241m=\u001b[39m hf_quantizer\u001b[38;5;241m.\u001b[39mupdate_device_map(device_map)\n",
"File \u001b[0;32m~/miniconda3/lib/python3.12/site-packages/transformers/quantizers/quantizer_gptq.py:52\u001b[0m, in \u001b[0;36mGptqHfQuantizer.validate_environment\u001b[0;34m(self, *args, **kwargs)\u001b[0m\n\u001b[1;32m 51\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21mvalidate_environment\u001b[39m(\u001b[38;5;28mself\u001b[39m, \u001b[38;5;241m*\u001b[39margs, \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39mkwargs):\n\u001b[0;32m---> 52\u001b[0m gptq_supports_cpu \u001b[38;5;241m=\u001b[39m version\u001b[38;5;241m.\u001b[39mparse(\u001b[43mimportlib\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mmetadata\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mversion\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mauto-gptq\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m)\u001b[49m) \u001b[38;5;241m>\u001b[39m version\u001b[38;5;241m.\u001b[39mparse(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124m0.4.2\u001b[39m\u001b[38;5;124m\"\u001b[39m)\n\u001b[1;32m 53\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m gptq_supports_cpu \u001b[38;5;129;01mand\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m torch\u001b[38;5;241m.\u001b[39mcuda\u001b[38;5;241m.\u001b[39mis_available():\n\u001b[1;32m 54\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m \u001b[38;5;167;01mRuntimeError\u001b[39;00m(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mGPU is required to quantize or run quantize model.\u001b[39m\u001b[38;5;124m\"\u001b[39m)\n",
"File \u001b[0;32m~/miniconda3/lib/python3.12/importlib/metadata/__init__.py:889\u001b[0m, in \u001b[0;36mversion\u001b[0;34m(distribution_name)\u001b[0m\n\u001b[1;32m 882\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21mversion\u001b[39m(distribution_name):\n\u001b[1;32m 883\u001b[0m \u001b[38;5;250m \u001b[39m\u001b[38;5;124;03m\"\"\"Get the version string for the named package.\u001b[39;00m\n\u001b[1;32m 884\u001b[0m \n\u001b[1;32m 885\u001b[0m \u001b[38;5;124;03m :param distribution_name: The name of the distribution package to query.\u001b[39;00m\n\u001b[1;32m 886\u001b[0m \u001b[38;5;124;03m :return: The version string for the package as defined in the package's\u001b[39;00m\n\u001b[1;32m 887\u001b[0m \u001b[38;5;124;03m \"Version\" metadata key.\u001b[39;00m\n\u001b[1;32m 888\u001b[0m \u001b[38;5;124;03m \"\"\"\u001b[39;00m\n\u001b[0;32m--> 889\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43mdistribution\u001b[49m\u001b[43m(\u001b[49m\u001b[43mdistribution_name\u001b[49m\u001b[43m)\u001b[49m\u001b[38;5;241m.\u001b[39mversion\n",
"File \u001b[0;32m~/miniconda3/lib/python3.12/importlib/metadata/__init__.py:862\u001b[0m, in \u001b[0;36mdistribution\u001b[0;34m(distribution_name)\u001b[0m\n\u001b[1;32m 856\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21mdistribution\u001b[39m(distribution_name):\n\u001b[1;32m 857\u001b[0m \u001b[38;5;250m \u001b[39m\u001b[38;5;124;03m\"\"\"Get the ``Distribution`` instance for the named package.\u001b[39;00m\n\u001b[1;32m 858\u001b[0m \n\u001b[1;32m 859\u001b[0m \u001b[38;5;124;03m :param distribution_name: The name of the distribution package as a string.\u001b[39;00m\n\u001b[1;32m 860\u001b[0m \u001b[38;5;124;03m :return: A ``Distribution`` instance (or subclass thereof).\u001b[39;00m\n\u001b[1;32m 861\u001b[0m \u001b[38;5;124;03m \"\"\"\u001b[39;00m\n\u001b[0;32m--> 862\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43mDistribution\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mfrom_name\u001b[49m\u001b[43m(\u001b[49m\u001b[43mdistribution_name\u001b[49m\u001b[43m)\u001b[49m\n",
"File \u001b[0;32m~/miniconda3/lib/python3.12/importlib/metadata/__init__.py:399\u001b[0m, in \u001b[0;36mDistribution.from_name\u001b[0;34m(cls, name)\u001b[0m\n\u001b[1;32m 397\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28mnext\u001b[39m(\u001b[38;5;28mcls\u001b[39m\u001b[38;5;241m.\u001b[39mdiscover(name\u001b[38;5;241m=\u001b[39mname))\n\u001b[1;32m 398\u001b[0m \u001b[38;5;28;01mexcept\u001b[39;00m \u001b[38;5;167;01mStopIteration\u001b[39;00m:\n\u001b[0;32m--> 399\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m PackageNotFoundError(name)\n",
"\u001b[0;31mPackageNotFoundError\u001b[0m: No package metadata was found for auto-gptq"
]
}
],
"source": [
"\n",
"from transformers import AutoModelForCausalLM, AutoTokenizer\n",
"\n",
"# ๆจกๅ่ทฏๅพ\n",
"model_path = \"./\"\n",
"\n",
"# ๅ ่ฝฝๆจกๅ๏ผๆพๅผๆๅฎ torch_dtype\n",
"model = AutoModelForCausalLM.from_pretrained(\n",
" model_path,\n",
" torch_dtype=torch.float16, # ๆ torch.float16๏ผไธๆ้ไธ่ด\n",
" device_map=\"auto\" # ๅฏ้๏ผ่ชๅจๅ้
่ฎพๅค\n",
")\n",
"\n",
"# ๅ ่ฝฝๅ่ฏๅจ\n",
"tokenizer = AutoTokenizer.from_pretrained(model_path)\n",
"\n",
"# ๆต่ฏๆจกๅ\n",
"input_text = \"Hello, how are you?\"\n",
"inputs = tokenizer(input_text, return_tensors=\"pt\")\n",
"outputs = model.generate(**inputs)\n",
"print(tokenizer.decode(outputs[0], skip_special_tokens=True))"
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "9d15b55d-f5bc-40ad-80e5-81d421bd0592",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Looking in indexes: http://mirrors.aliyun.com/pypi/simple\n",
"Collecting auto-gptq\n",
" Downloading http://mirrors.aliyun.com/pypi/packages/90/e5/b22697903982284fe284568fb2663a2196694a8eee637f5cf4ccfe435a38/auto_gptq-0.7.1.tar.gz (126 kB)\n",
"\u001b[2K \u001b[90mโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ\u001b[0m \u001b[32m126.1/126.1 kB\u001b[0m \u001b[31m1.4 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0ma \u001b[36m0:00:01\u001b[0m\n",
"\u001b[?25h Preparing metadata (setup.py) ... \u001b[?25ldone\n",
"\u001b[?25hDiscarding \u001b[4;34mhttp://mirrors.aliyun.com/pypi/packages/90/e5/b22697903982284fe284568fb2663a2196694a8eee637f5cf4ccfe435a38/auto_gptq-0.7.1.tar.gz#sha256=5c61ad380e9b4c603757c254765e9083a90a820cd0aff1b5d2c6f7fd96c85e80 (from http://mirrors.aliyun.com/pypi/simple/auto-gptq/) (requires-python:>=3.8.0)\u001b[0m: \u001b[33mRequested auto-gptq from http://mirrors.aliyun.com/pypi/packages/90/e5/b22697903982284fe284568fb2663a2196694a8eee637f5cf4ccfe435a38/auto_gptq-0.7.1.tar.gz#sha256=5c61ad380e9b4c603757c254765e9083a90a820cd0aff1b5d2c6f7fd96c85e80 has inconsistent version: expected '0.7.1', but metadata has '0.7.1+cu1241'\u001b[0m\n",
" Downloading http://mirrors.aliyun.com/pypi/packages/34/71/c3e73cf17681f6ff4754ef8f4cb8b67af3def230fc8711eac1250bbd78d5/auto_gptq-0.7.0.tar.gz (124 kB)\n",
"\u001b[2K \u001b[90mโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ\u001b[0m \u001b[32m124.6/124.6 kB\u001b[0m \u001b[31m2.4 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0ma \u001b[36m0:00:01\u001b[0m\n",
"\u001b[?25h Preparing metadata (setup.py) ... \u001b[?25ldone\n",
"\u001b[?25hDiscarding \u001b[4;34mhttp://mirrors.aliyun.com/pypi/packages/34/71/c3e73cf17681f6ff4754ef8f4cb8b67af3def230fc8711eac1250bbd78d5/auto_gptq-0.7.0.tar.gz#sha256=50a5396fae2db5a19446b3198ef0e86ee520846b881db47bdbf4eb9260eac723 (from http://mirrors.aliyun.com/pypi/simple/auto-gptq/) (requires-python:>=3.8.0)\u001b[0m: \u001b[33mRequested auto-gptq from http://mirrors.aliyun.com/pypi/packages/34/71/c3e73cf17681f6ff4754ef8f4cb8b67af3def230fc8711eac1250bbd78d5/auto_gptq-0.7.0.tar.gz#sha256=50a5396fae2db5a19446b3198ef0e86ee520846b881db47bdbf4eb9260eac723 has inconsistent version: expected '0.7.0', but metadata has '0.7.0+cu1241'\u001b[0m\n",
" Downloading http://mirrors.aliyun.com/pypi/packages/49/af/02b66e55dfd9aeb0ece923843043724ed7432ec0c649ea0f3b9fa1dd90c6/auto_gptq-0.6.0.tar.gz (120 kB)\n",
"\u001b[2K \u001b[90mโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ\u001b[0m \u001b[32m121.0/121.0 kB\u001b[0m \u001b[31m1.9 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0ma \u001b[36m0:00:01\u001b[0m\n",
"\u001b[?25h Preparing metadata (setup.py) ... \u001b[?25lerror\n",
" \u001b[1;31merror\u001b[0m: \u001b[1msubprocess-exited-with-error\u001b[0m\n",
" \n",
" \u001b[31mร\u001b[0m \u001b[32mpython setup.py egg_info\u001b[0m did not run successfully.\n",
" \u001b[31mโ\u001b[0m exit code: \u001b[1;36m1\u001b[0m\n",
" \u001b[31mโฐโ>\u001b[0m \u001b[31m[20 lines of output]\u001b[0m\n",
" \u001b[31m \u001b[0m python: can't open file '/tmp/pip-install-9tzda5pv/auto-gptq_60a9cac9f2ef4bb89bb1ce3f0d0126b0/./autogptq_extension/qigen/generate.py': [Errno 2] No such file or directory\n",
" \u001b[31m \u001b[0m Traceback (most recent call last):\n",
" \u001b[31m \u001b[0m File \"/tmp/pip-install-9tzda5pv/auto-gptq_60a9cac9f2ef4bb89bb1ce3f0d0126b0/setup.py\", line 109, in <module>\n",
" \u001b[31m \u001b[0m subprocess.check_output([\"python\", \"./autogptq_extension/qigen/generate.py\", \"--module\", \"--search\", \"--p\", str(p)])\n",
" \u001b[31m \u001b[0m File \"/root/miniconda3/lib/python3.12/subprocess.py\", line 466, in check_output\n",
" \u001b[31m \u001b[0m return run(*popenargs, stdout=PIPE, timeout=timeout, check=True,\n",
" \u001b[31m \u001b[0m ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n",
" \u001b[31m \u001b[0m File \"/root/miniconda3/lib/python3.12/subprocess.py\", line 571, in run\n",
" \u001b[31m \u001b[0m raise CalledProcessError(retcode, process.args,\n",
" \u001b[31m \u001b[0m subprocess.CalledProcessError: Command '['python', './autogptq_extension/qigen/generate.py', '--module', '--search', '--p', '48']' returned non-zero exit status 2.\n",
" \u001b[31m \u001b[0m \n",
" \u001b[31m \u001b[0m During handling of the above exception, another exception occurred:\n",
" \u001b[31m \u001b[0m \n",
" \u001b[31m \u001b[0m Traceback (most recent call last):\n",
" \u001b[31m \u001b[0m File \"<string>\", line 2, in <module>\n",
" \u001b[31m \u001b[0m File \"<pip-setuptools-caller>\", line 34, in <module>\n",
" \u001b[31m \u001b[0m File \"/tmp/pip-install-9tzda5pv/auto-gptq_60a9cac9f2ef4bb89bb1ce3f0d0126b0/setup.py\", line 111, in <module>\n",
" \u001b[31m \u001b[0m raise Exception(f\"Generating QiGen kernels failed with the error shown above.\")\n",
" \u001b[31m \u001b[0m Exception: Generating QiGen kernels failed with the error shown above.\n",
" \u001b[31m \u001b[0m Generating qigen kernels...\n",
" \u001b[31m \u001b[0m \u001b[31m[end of output]\u001b[0m\n",
" \n",
" \u001b[1;35mnote\u001b[0m: This error originates from a subprocess, and is likely not a problem with pip.\n",
"\u001b[1;31merror\u001b[0m: \u001b[1mmetadata-generation-failed\u001b[0m\n",
"\n",
"\u001b[31mร\u001b[0m Encountered error while generating package metadata.\n",
"\u001b[31mโฐโ>\u001b[0m See above for output.\n",
"\n",
"\u001b[1;35mnote\u001b[0m: This is an issue with the package mentioned above, not pip.\n",
"\u001b[1;36mhint\u001b[0m: See above for details.\n",
"\u001b[?25h"
]
}
],
"source": [
"!pip install auto-gptq"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "b8c14f99-2926-433f-8249-58cc123ce73d",
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.12.3"
}
},
"nbformat": 4,
"nbformat_minor": 5
}
|