Upload benchmark_generation_mamba_simple.py
Browse files
benchmark_generation_mamba_simple.py
ADDED
@@ -0,0 +1,74 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2023, Tri Dao, Albert Gu.
|
2 |
+
|
3 |
+
import argparse
|
4 |
+
import time
|
5 |
+
import json
|
6 |
+
|
7 |
+
import torch
|
8 |
+
import torch.nn.functional as F
|
9 |
+
|
10 |
+
from einops import rearrange
|
11 |
+
|
12 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM, LlamaTokenizer
|
13 |
+
|
14 |
+
from mamba_ssm.models.mixer_seq_simple import MambaLMHeadModel
|
15 |
+
|
16 |
+
|
17 |
+
parser = argparse.ArgumentParser(description="Generation benchmarking")
|
18 |
+
parser.add_argument("--model-name", type=str, default="state-spaces/mamba-130m")
|
19 |
+
parser.add_argument("--prompt", type=str, default=None)
|
20 |
+
parser.add_argument("--promptlen", type=int, default=100)
|
21 |
+
parser.add_argument("--genlen", type=int, default=100)
|
22 |
+
parser.add_argument("--temperature", type=float, default=1.0)
|
23 |
+
parser.add_argument("--topk", type=int, default=1)
|
24 |
+
parser.add_argument("--topp", type=float, default=1.0)
|
25 |
+
parser.add_argument("--repetition-penalty", type=float, default=1.0)
|
26 |
+
parser.add_argument("--batch", type=int, default=1)
|
27 |
+
args = parser.parse_args()
|
28 |
+
|
29 |
+
repeats = 3
|
30 |
+
device = "cuda"
|
31 |
+
dtype = torch.float16
|
32 |
+
|
33 |
+
print(f"Loading model {args.model_name}")
|
34 |
+
tokenizer = LlamaTokenizer.from_pretrained(args.model_name)
|
35 |
+
model = MambaLMHeadModel.from_pretrained(args.model_name, device=device, dtype=dtype)
|
36 |
+
model.eval()
|
37 |
+
print(f"Number of parameters: {sum(p.numel() for p in model.parameters() if p.requires_grad)}")
|
38 |
+
|
39 |
+
torch.random.manual_seed(0)
|
40 |
+
if args.prompt is None:
|
41 |
+
input_ids = torch.randint(1, 1000, (args.batch, args.promptlen), dtype=torch.long, device="cuda")
|
42 |
+
attn_mask = torch.ones_like(input_ids, dtype=torch.long, device="cuda")
|
43 |
+
else:
|
44 |
+
args.prompt = args.prompt.replace('\\n', '\n')
|
45 |
+
tokens = tokenizer(args.prompt, return_tensors="pt")
|
46 |
+
input_ids = tokens.input_ids.to(device=device)
|
47 |
+
attn_mask = tokens.attention_mask.to(device=device)
|
48 |
+
max_length = input_ids.shape[1] + args.genlen
|
49 |
+
|
50 |
+
fn = lambda: model.generate(
|
51 |
+
input_ids=input_ids,
|
52 |
+
max_length=max_length,
|
53 |
+
cg=True,
|
54 |
+
return_dict_in_generate=True,
|
55 |
+
output_scores=True,
|
56 |
+
enable_timing=False,
|
57 |
+
temperature=args.temperature,
|
58 |
+
top_k=args.topk,
|
59 |
+
top_p=args.topp,
|
60 |
+
repetition_penalty=args.repetition_penalty,
|
61 |
+
)
|
62 |
+
out = fn()
|
63 |
+
if args.prompt is not None:
|
64 |
+
l = tokenizer.batch_decode(out.sequences.tolist())
|
65 |
+
text = ''.join(l)
|
66 |
+
print(text)
|
67 |
+
|
68 |
+
torch.cuda.synchronize()
|
69 |
+
start = time.time()
|
70 |
+
for _ in range(repeats):
|
71 |
+
fn()
|
72 |
+
torch.cuda.synchronize()
|
73 |
+
print(f"Prompt length: {len(input_ids[0])}, generation length: {len(out.sequences[0]) - len(input_ids[0])}")
|
74 |
+
print(f"{args.model_name} prompt processing + decoding time: {(time.time() - start) / repeats * 1000:.0f}ms")
|