# Copyright (c) 2023, Tri Dao, Albert Gu. import argparse import time import json import torch import torch.nn.functional as F from einops import rearrange from transformers import AutoTokenizer, AutoModelForCausalLM, LlamaTokenizer from mamba_ssm.models.mixer_seq_simple import MambaLMHeadModel parser = argparse.ArgumentParser(description="Generation benchmarking") parser.add_argument("--model-name", type=str, default="state-spaces/mamba-130m") parser.add_argument("--prompt", type=str, default=None) parser.add_argument("--promptlen", type=int, default=100) parser.add_argument("--genlen", type=int, default=100) parser.add_argument("--temperature", type=float, default=1.0) parser.add_argument("--topk", type=int, default=1) parser.add_argument("--topp", type=float, default=1.0) parser.add_argument("--repetition-penalty", type=float, default=1.0) parser.add_argument("--batch", type=int, default=1) args = parser.parse_args() repeats = 3 device = "cuda" dtype = torch.float16 print(f"Loading model {args.model_name}") tokenizer = LlamaTokenizer.from_pretrained(args.model_name) model = MambaLMHeadModel.from_pretrained(args.model_name, device=device, dtype=dtype) model.eval() print(f"Number of parameters: {sum(p.numel() for p in model.parameters() if p.requires_grad)}") torch.random.manual_seed(0) if args.prompt is None: input_ids = torch.randint(1, 1000, (args.batch, args.promptlen), dtype=torch.long, device="cuda") attn_mask = torch.ones_like(input_ids, dtype=torch.long, device="cuda") else: args.prompt = args.prompt.replace('\\n', '\n') tokens = tokenizer(args.prompt, return_tensors="pt") input_ids = tokens.input_ids.to(device=device) attn_mask = tokens.attention_mask.to(device=device) max_length = input_ids.shape[1] + args.genlen fn = lambda: model.generate( input_ids=input_ids, max_length=max_length, cg=True, return_dict_in_generate=True, output_scores=True, enable_timing=False, temperature=args.temperature, top_k=args.topk, top_p=args.topp, repetition_penalty=args.repetition_penalty, ) out = fn() if args.prompt is not None: l = tokenizer.batch_decode(out.sequences.tolist()) text = ''.join(l) print(text) torch.cuda.synchronize() start = time.time() for _ in range(repeats): fn() torch.cuda.synchronize() print(f"Prompt length: {len(input_ids[0])}, generation length: {len(out.sequences[0]) - len(input_ids[0])}") print(f"{args.model_name} prompt processing + decoding time: {(time.time() - start) / repeats * 1000:.0f}ms")