File size: 61,544 Bytes
7718235 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 |
import json
import pickle
import os
from types import SimpleNamespace as sn
import time
from os.path import join
import copy
import numpy as np
import pandas as pd
import torch
import torch.distributed as dist
from torch.distributed.algorithms.join import Join
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.optim import AdamW
from torch.optim.lr_scheduler import ReduceLROnPlateau
from torch.utils.data import Subset
from torch.utils.tensorboard import SummaryWriter
from torch_geometric.loader import DataLoader
from torch.utils.data import DataLoader as TorchDataLoader
import loralib as lora
import gpytorch
import data
import utils.configs
from model.module.utils import loss_fn_mapping
import data
from model.model import create_model, create_model_and_load
from torch import _dynamo
_dynamo.config.suppress_errors = True
class PreMode_trainer(object):
"""
A wrapper for dataloader, summary writer, optimizer, scheduler
"""
def __init__(self, hparams, model, stage: str = "train", dataset=None, device_id=None):
super(PreMode_trainer, self).__init__()
if isinstance(hparams, dict):
hparams = sn(**hparams)
self.hparams = hparams
# save the ddp_rank to write the log
self.device_id = device_id
if device_id is not None and torch.cuda.is_available():
self.device = f"cuda:{device_id}"
else:
self.device = "cpu"
# Don't load model, just store the model from input.
self.model = model.to(self.device)
# initialize dataloaders
self.dataset = dataset
self.train_dataset = None
self.val_dataset = None
self.test_dataset = None
self.train_dataloader = None
self.val_dataloader = None
self.test_dataloader = None
self.split_fn = self.hparams.data_split_fn
self.setup_dataloaders(stage, self.split_fn)
print(f'Finished setting dataloaders for rank {self.device_id}')
if self.train_dataloader is not None:
self.batchs_per_epoch = len(self.train_dataloader)
self.num_data = len(self.train_dataloader.dataset)
else:
self.batchs_per_epoch = 0
self.num_data = len(self.test_dataloader.dataset)
self.reset_train_dataloader_each_epoch = self.hparams.reset_train_dataloader_each_epoch and hparams.data_split_fn != "_by_anno"
self.reset_train_dataloader_each_epoch_seed = self.hparams.reset_train_dataloader_each_epoch_seed
self.train_iterator = None
self.val_iterator = None
self.test_iterator = None
# initialize loss function
if self.hparams.loss_fn == "weighted_combined_loss" or "weighted_loss" in self.hparams.loss_fn:
label_counts = self.dataset.get_label_counts()
if len(label_counts) == 4:
# [lof, beni, gain, patho]
# note that we changed to 2-dim scheme now.
total_count_1 = label_counts.sum()
task_weight = total_count_1 / (label_counts[0] + label_counts[2]) # patho / glof
total_count_2 = total_count_1 - label_counts[3] - label_counts[0] # gof + lof
if label_counts[1] != 0:
weight_1 = torch.tensor([total_count_1 / label_counts[1] / 2,
total_count_1 / (total_count_1 - label_counts[1]) / 2],
dtype=torch.float32, device=self.device)
weight_2 = torch.tensor([total_count_2 / label_counts[0] / 2,
total_count_2 / label_counts[2] / 2],
dtype=torch.float32, device=self.device)
else:
weight_1 = torch.ones(2, dtype=torch.float32, device=self.device)
weight_2 = torch.tensor([total_count_2 / label_counts[0] / 2,
total_count_2 / label_counts[2] / 2],
dtype=torch.float32, device=self.device)
elif len(label_counts) == 2:
# [beni, patho]
task_weight = 0
total_count_1 = label_counts.sum()
if label_counts[0] != 0:
weight_1 = torch.tensor([total_count_1 / label_counts[0] / 2,
total_count_1 / label_counts[1] / 2],
dtype=torch.float32, device=self.device)
weight_2 = torch.zeros(2, dtype=torch.float32, device=self.device)
else:
weight_1 = torch.ones(2, dtype=torch.float32, device=self.device)
weight_2 = torch.zeros(2, dtype=torch.float32, device=self.device)
else:
raise ValueError("The number of labels should be 2 or 4.")
weight=torch.cat([weight_1, weight_2])
print(f"set up weighted loss function with weight: {weight}")
self.loss_fn = loss_fn_mapping[self.hparams.loss_fn](weight=weight, task_weight=task_weight)
# Archived, as we are not using the 3-dim scheme any more.
# print("Initialize the output module to fit the weighted loss function.")
# with torch.no_grad():
# if isinstance(self.model, DDP):
# self.model.module.output_model.output_network[0].weight[1].copy_(self.model.module.output_model.output_network[0].weight[2])
# else:
# self.model.output_model.output_network[0].weight[1].copy_(self.model.output_model.output_network[0].weight[2])
elif self.hparams.loss_fn == "GP_loss":
self.loss_fn = gpytorch.mlls.VariationalELBO(self.model.output_model.likelihood,
self.model.output_model.output_network,
num_data=self.num_data)
self.hparams.y_weight = -1
else:
self.loss_fn = loss_fn_mapping[self.hparams.loss_fn]
# freeze representation module if hparams.freeze_representation is True
if self.hparams.freeze_representation:
for param in self.model.representation_model.parameters():
param.requires_grad = False
# deactivate dropout
self.model.representation_model.eval()
if self.hparams.freeze_representation_but_attention:
for param in self.model.representation_model.parameters():
param.requires_grad = False
# deactivate dropout
self.model.representation_model.eval()
for param in self.model.representation_model.attention_layers.parameters():
param.requires_grad = True
if self.hparams.freeze_representation_but_gru:
for param in self.model.representation_model.parameters():
param.requires_grad = False
# deactivate dropout
self.model.representation_model.eval()
for layer in self.model.representation_model.attention_layers:
assert layer.gru is not None
for param in layer.gru.parameters():
param.requires_grad = True
if self.hparams.use_lora is not None:
self.model.eval()
lora.mark_only_lora_as_trainable(model)
# if model is DDP, we need to mark self.model.module:
if isinstance(self.model, DDP):
if self.hparams.loss_fn == "weighted_combined_loss" or self.hparams.loss_fn == "combined_loss":
self.model.module.output_model.output_network.requires_grad_(True)
elif self.hparams.loss_fn == "weighted_loss":
self.model.module.output_model.requires_grad_(True)
elif self.hparams.model == "lora-esm":
self.model.module.output_model.requires_grad_(True)
else:
if self.hparams.loss_fn == "weighted_combined_loss" or self.hparams.loss_fn == "combined_loss":
self.model.output_model.output_network.requires_grad_(True)
elif self.hparams.loss_fn == "weighted_loss":
self.model.output_model.requires_grad_(True)
elif self.hparams.model == "lora-esm":
self.model.output_model.requires_grad_(True)
self.use_lora = True
else:
self.use_lora = False
# initialize loss collection
self.losses = None
self._reset_losses_dict()
# initialize the prediction collection
self.predictions = None
self._reset_predictions_dict()
# initialize global step and epoch
self.global_step = 0
self.current_epoch = 0
# initialize optimizers
self.updated = True
self.optimizer = None
self.scheduler = None
self.lr_scheduler = None
self.configure_optimizers()
# initialize contrastive loss
self.contrastive_loss = loss_fn_mapping[self.hparams.contrastive_loss_fn] if self.hparams.contrastive_loss_fn is not None else None
# initialize summary writer
if stage == "train":
self.writer = SummaryWriter(log_dir=f'{self.hparams.log_dir}/log/')
def setup_dataloaders(self, stage: str = 'train', split_fn="_by_uniprot_id"):
if self.dataset is None:
self.dataset = getattr(data, self.hparams["dataset"])(
data_file=self.hparams.data_file_train,
data_type=self.hparams.data_type,
radius=self.hparams.radius,
max_neighbors=self.hparams.max_num_neighbors,
loop=self.hparams.loop,
)
if self.hparams.dataset.startswith("FullGraph"):
data_loader_fn = TorchDataLoader
else:
data_loader_fn = DataLoader
if stage == 'train':
# make train/val split
if self.hparams.val_size > 0:
idx_train, idx_val = getattr(utils.configs, "make_splits_train_val" + split_fn)(
self.dataset,
self.hparams.train_size,
self.hparams.val_size,
self.hparams.seed,
self.hparams.batch_size,
join(self.hparams.log_dir, f"splits.{self.device_id}.npz"),
)
print(f"train {len(idx_train)}, val {len(idx_val)}")
if split_fn == "_by_anno":
self.val_dataset = copy.deepcopy(self.dataset).subset(idx_val)
self.train_dataset = self.dataset.subset(idx_train)
else:
self.val_dataset = Subset(self.dataset, idx_val)
self.train_dataset = Subset(self.dataset, idx_train)
self.idx_val = idx_val
self.idx_train = idx_train
else:
self.train_dataset = self.dataset
self.val_dataset = None
self.idx_train = np.arange(len(self.dataset))
self.idx_val = None
dataloader_args = {
"batch_size": self.hparams.batch_size,
"num_workers": min(20, self.hparams.num_workers),
"pin_memory": True,
"shuffle": split_fn=='_by_anno'
}
if self.hparams.num_workers == 0:
dataloader_args['pin_memory_device'] = 'cpu'
self.train_dataloader = data_loader_fn(
dataset=self.train_dataset,
**dataloader_args,
)
if self.val_dataset is not None:
dataloader_args['shuffle'] = False
dataloader_args["num_workers"] = 0
dataloader_args["pin_memory"] = False
self.val_dataloader = data_loader_fn(
dataset=self.val_dataset,
**dataloader_args,
)
else:
self.val_dataloader = None
elif stage == 'test':
# only prepare test dataloader
self.test_dataset = self.dataset
dataloader_args = {
"batch_size": self.hparams.batch_size,
"num_workers": 0,
"pin_memory": False,
"shuffle": False
}
self.test_dataloader = data_loader_fn(
dataset=self.test_dataset,
**dataloader_args,
)
elif stage == 'all':
# make train/test/val split
idx_train, idx_val, idx_test = getattr(utils.configs, "make_splits_train_val_test" + split_fn)(
self.dataset,
self.hparams.train_size,
self.hparams.val_size,
self.hparams.test_size,
0,
self.hparams.batch_size * self.hparams.num_workers,
join(self.hparams.log_dir, "splits.npz"),
self.hparams.splits,
)
print(f"train {len(idx_train)}, val {len(idx_val)}, test {len(idx_test)}")
self.val_dataset = copy.deepcopy(self.dataset).subset(idx_val)
self.idx_val = idx_val
self.test_dataset = copy.deepcopy(self.dataset).subset(idx_test)
self.idx_test = idx_test
self.train_dataset = self.dataset.subset(idx_train)
self.idx_train = idx_train
self.train_dataloader = data_loader_fn(
dataset=self.train_dataset,
batch_size=self.hparams.batch_size,
num_workers=0,
pin_memory=True,
pin_memory_device='cpu',
shuffle=False,
)
self.val_dataloader = data_loader_fn(
dataset=self.val_dataset,
batch_size=self.hparams.batch_size,
num_workers=0,
pin_memory=True,
pin_memory_device='cpu',
shuffle=False,
)
self.test_dataloader = data_loader_fn(
dataset=self.test_dataset,
batch_size=self.hparams.batch_size,
num_workers=0,
pin_memory=True,
pin_memory_device='cpu',
shuffle=False,
)
else:
raise ValueError(f"stage {stage} not supported")
def configure_optimizers(self):
# only include parameters that require gradients
self.optimizer = AdamW(
filter(lambda p: p.requires_grad, self.model.parameters()),
lr=float(self.hparams.lr),
weight_decay=self.hparams.weight_decay,
)
self.scheduler = ReduceLROnPlateau(
self.optimizer,
"min",
factor=self.hparams.lr_factor,
patience=self.hparams.lr_patience,
min_lr=float(self.hparams.lr_min),
)
self.lr_scheduler = {
"scheduler": self.scheduler,
"monitor": getattr(self.hparams, "lr_metric", "val_loss"),
"interval": "epoch",
"frequency": 1,
}
def forward(self, x, x_mask, x_alt, pos, batch=None,
edge_index=None, edge_attr=None,
edge_index_star=None, edge_attr_star=None,
node_vec_attr=None,
extra_args=None,
return_attn=False):
return self.model(x=x,
x_mask=x_mask,
x_alt=x_alt,
pos=pos,
batch=batch,
edge_index=edge_index,
edge_attr=edge_attr,
edge_index_star=edge_index_star,
edge_attr_star=edge_attr_star,
node_vec_attr=node_vec_attr,
extra_args=extra_args,
return_attn=return_attn)
def training_step(self):
if self.train_iterator is None:
raise ValueError("train_iterator is None, please call training_epoch_begin() first")
batch = next(self.train_iterator)
loss = self.step(batch, "train") / self.hparams.num_steps_update
loss.backward()
self.write_loss_log("train", loss)
# parameters_without_grad = []
# for name, param in self.model.named_parameters():
# if param.grad is None:
# parameters_without_grad.append(name)
# print("Parameters without gradients:")
# for param_name in parameters_without_grad:
# print(param_name)
self.updated = False
self.global_step += 1 # update global step
return loss
def validation_step(self):
if self.val_iterator is None:
raise ValueError("val_iterator is None, please call validation_epoch_begin() first")
batch = next(self.val_iterator)
with torch.no_grad():
loss = self.step(batch, "val")
# self.write_loss_log("val", loss)
return loss
def test_step(self):
if self.test_iterator is None:
raise ValueError("test_iterator is None, please call test_epoch_begin() first")
batch = next(self.test_iterator)
with torch.no_grad():
return self.step(batch, "test")
def interpret_step(self, batch):
with torch.no_grad():
return self.step(batch, "interpret")
def step(self, batch, stage):
with torch.set_grad_enabled(stage == "train"):
if isinstance(batch, dict):
extra_args = copy.deepcopy(batch)
batch = sn(**batch)
else:
extra_args = batch.to_dict()
# extra_args actually won't be used in the model
for a in ('y', 'x', 'x_mask', 'x_alt', 'pos', 'batch',
'edge_index', 'edge_attr',
'edge_index_star', 'edge_attr_star',
'node_vec_attr'):
if a in extra_args:
del extra_args[a]
y, x_embed, attn_weight_layers = self.forward(
x=batch.x.to(self.device, non_blocking=True),
x_mask=batch.x_mask.to(self.device, non_blocking=True),
x_alt=batch.x_alt.to(self.device, non_blocking=True),
pos=batch.pos.to(self.device, non_blocking=True) if hasattr(batch, "pos") and batch.pos is not None else None,
batch=batch.batch.to(self.device, non_blocking=True) if hasattr(batch, "batch") and batch.batch is not None else None,
edge_index=batch.edge_index.to(self.device, non_blocking=True) if hasattr(batch, "edge_index") and batch.edge_index is not None else None,
edge_index_star=batch.edge_index_star.to(self.device, non_blocking=True) if hasattr(batch, "edge_index_star") and batch.edge_index_star is not None else None,
edge_attr=batch.edge_attr.to(self.device, non_blocking=True) if hasattr(batch, "edge_attr") and batch.edge_attr is not None else None,
edge_attr_star=batch.edge_attr_star.to(self.device, non_blocking=True) if hasattr(batch, "edge_attr_star") and batch.edge_attr_star is not None else None,
node_vec_attr=batch.node_vec_attr.to(self.device, non_blocking=True) if hasattr(batch, "node_vec_attr") and batch.node_vec_attr is not None else None,
extra_args=extra_args,
return_attn=stage == "interpret",
)
if stage == "test":
if self.hparams.dataset.startswith("Mask"):
# if mask dataset, and we are testing, then we don't want to mark other locations but mask
self.predictions['y'].append(y[batch.x_mask == False].detach().cpu().numpy())
else:
self.predictions['y'].append(y.detach().cpu().numpy())
loss_y = 0
if stage != "interpret":
if hasattr(batch, 'y'):
if batch.y.ndim == 1 and self.hparams.loss_fn != "cross_entropy":
batch.y = batch.y.unsqueeze(1)
# y loss, if mask predict, only predict the non-masked locations
if self.hparams.dataset.startswith("Mask"):
y = y[batch.x_mask==False]
batch.y = batch.y[batch.x_mask==False]
if self.hparams.loss_fn == "GP_loss":
batch.y = (batch.y + 1) / 2
if hasattr(batch, 'score_mask'):
loss_y = self.loss_fn(input=y,
target=batch.y.to(self.device, non_blocking=True),
weight=batch.score_mask.to(self.device, non_blocking=True))
else:
loss_y = self.loss_fn(y, batch.y.to(self.device, non_blocking=True))
if loss_y.ndim > 0:
loss_y = loss_y.mean()
if self.contrastive_loss is not None:
loss_cont = self.contrastive_loss(x_embed, batch.y.to(self.device))
else:
loss_cont = 0
if self.hparams.y_weight != 0 and stage != "interpret":
self.losses[stage + "_y"].append(loss_y.detach().cpu() * self.hparams.y_weight)
# total loss
loss = loss_y * self.hparams.y_weight + loss_cont
self.losses[stage].append(loss.detach().cpu())
return loss
else:
if self.hparams.loss_fn == "GP_loss":
return self.model.output_model.likelihood(y).variance, self.model.output_model.likelihood(y).mean, x_embed, attn_weight_layers
else:
return None, y, x_embed, attn_weight_layers
def optimizer_step(self, loss=None):
# optimizer = kwargs["optimizer"] if "optimizer" in kwargs else args[2]
if self.global_step < self.hparams.lr_warmup_steps:
lr_scale = min(
1.0,
float(self.global_step + 1)
/ float(self.hparams.lr_warmup_steps),
)
for pg in self.optimizer.param_groups:
pg["lr"] = lr_scale * float(self.hparams.lr)
# loss is not used in optimizer step anymore
self.optimizer.step()
self.optimizer.zero_grad()
self.updated = True
def scheduler_step(self, val_loss):
self.scheduler.step(val_loss)
def training_epoch_begin(self):
if hasattr(self.dataset, 'env') and self.dataset.env is not None:
self.dataset.env.close()
self.dataset.env = None
if hasattr(self.dataset, 'txn') and self.dataset.txn is not None:
self.dataset.txn = None
self.train_iterator = iter(self.train_dataloader)
# set model to train mode
self.model.train()
def training_epoch_end(self):
self.train_iterator = None
self._reset_losses_dict()
self.current_epoch += 1
if self.reset_train_dataloader_each_epoch:
idx_train = getattr(utils.configs, "reshuffle_train" + self.split_fn)(self.idx_train, self.hparams.batch_size,
self.dataset,
seed=self.current_epoch if self.reset_train_dataloader_each_epoch_seed else None)
self.train_dataset = Subset(self.dataset, idx_train)
dataloader_args = {
"batch_size": self.hparams.batch_size,
"num_workers": min(1, self.hparams.num_workers),
"pin_memory": True,
"shuffle": False
}
if self.hparams.num_workers == 0:
dataloader_args['pin_memory_device'] = 'cpu'
self.train_dataloader = DataLoader(
dataset=self.train_dataset,
**dataloader_args,
)
def validation_epoch_begin(self):
if self.val_dataloader is None:
self.val_iterator = iter(self.train_dataloader)
else:
self.val_iterator = iter(self.val_dataloader)
# set model to eval mode
self.model.eval()
def validation_epoch_end(self, reset_train_loss=False):
self.val_iterator = None
# construct dict of logged metrics
result_dict = {
"epoch": int(self.current_epoch),
"lr": self.optimizer.param_groups[0]["lr"],
"train_loss": torch.stack(self.losses["train"]).mean().item() if len(self.losses["train"]) > 0 else None,
}
if self.val_dataset is not None:
result_dict["val_loss"] = torch.stack(self.losses["val"]).mean().item() if len(self.losses["val"]) > 0 else 0
self.write_loss_log("val", result_dict["val_loss"])
else:
# use train loss as val loss if no val dataset is present
result_dict["val_loss"] = torch.stack(self.losses["train"]).mean().item()
self.write_loss_log("val", torch.stack(self.losses["train"]).mean())
# add test loss if available
if len(self.losses["test"]) > 0:
result_dict["test_loss"] = torch.stack(self.losses["test"]).mean().item()
# if predictions are present, also log them separately
if len(self.losses["train_y"]) > 0:
result_dict["train_loss_y"] = torch.stack(self.losses["train_y"]).mean().item()
if self.val_dataset is not None:
result_dict["val_loss_y"] = torch.stack(self.losses["val_y"]).mean().item() if len(self.losses["val_y"]) > 0 else 0
if len(self.losses["test"]) > 0:
result_dict["test_loss_y"] = torch.stack(
self.losses["test_y"]
).mean().item()
if reset_train_loss:
self._reset_losses_dict()
else:
self._reset_val_losses_dict()
# set model back to train mode
self.model.train()
return result_dict
def testing_epoch_begin(self):
self.test_iterator = iter(self.test_dataloader)
# set model to eval mode
self.model.eval()
def testing_epoch_end(self):
self.test_iterator = None
# construct dict of logged metrics
result_dict = {
"epoch": int(self.current_epoch),
"lr": self.optimizer.param_groups[0]["lr"],
"test_loss": torch.stack(self.losses["test"]).mean().item(),
}
# if predictions are present, also log them separately
if len(self.losses["test_y"]) > 0:
if len(self.losses["test"]) > 0:
result_dict["test_loss_y"] = torch.stack(
self.losses["test_y"]
).mean().item()
self._reset_losses_dict()
# prepare result data frame
y_result = pd.DataFrame(np.concatenate(self.predictions['y'], axis=0),
index=self.dataset.data.index)
y_result.columns = [f'y.{i}' for i in y_result.columns]
result_df = pd.concat(
[self.dataset.data,
y_result,
],
axis=1
)
self._reset_predictions_dict()
# set model back to train mode
self.model.train()
return result_dict, result_df
def write_loss_log(self, stage, loss):
if self.device_id is None:
scalar_name = f"loss/{stage}"
else:
scalar_name = f"loss/ddp_rank.{self.device_id}.{stage}"
self.writer.add_scalar(scalar_name, loss, self.global_step)
if stage == "train" and self.device_id == 0:
for tag, value in self.model.named_parameters():
tag = tag.replace('.', '/')
self.writer.add_histogram('weights/'+tag, value.data.cpu().numpy(), self.global_step)
try:
# only add gradients if they are not None
if value.grad is not None:
self.writer.add_histogram('grads/'+tag, value.grad.data.cpu().numpy(), self.global_step)
except:
print(f"failed to add grad histogram for '{tag}' in counter: {self.global_step}")
def write_model(self, epoch=None, step=None, save_optimizer=False, optimizer_rank=None):
if save_optimizer:
assert optimizer_rank is not None
if epoch is None:
if step is None:
model_save_file_name = f"{self.hparams.log_dir}/model.epoch.{self.current_epoch}.step.{self.global_step}.pt"
if save_optimizer:
optimizer_save_file_name = f"{self.hparams.log_dir}/optimizer.epoch.{self.current_epoch}.step.{self.global_step}.rank.{optimizer_rank}.pt"
scheduler_save_file_name = f"{self.hparams.log_dir}/scheduler.epoch.{self.current_epoch}.step.{self.global_step}.rank.{optimizer_rank}.pt"
else:
model_save_file_name = f"{self.hparams.log_dir}/model.step.{step}.pt"
if save_optimizer:
optimizer_save_file_name = f"{self.hparams.log_dir}/optimizer.step.{step}.rank.{optimizer_rank}.pt"
scheduler_save_file_name = f"{self.hparams.log_dir}/scheduler.step.{step}.rank.{optimizer_rank}.pt"
else:
if step is None:
model_save_file_name = f"{self.hparams.log_dir}/model.epoch.{epoch}.pt"
if save_optimizer:
optimizer_save_file_name = f"{self.hparams.log_dir}/optimizer.epoch.{epoch}.rank.{optimizer_rank}.pt"
scheduler_save_file_name = f"{self.hparams.log_dir}/scheduler.epoch.{epoch}.rank.{optimizer_rank}.pt"
else:
model_save_file_name = f"{self.hparams.log_dir}/model.epoch.{epoch}.step.{step}.pt"
if save_optimizer:
optimizer_save_file_name = f"{self.hparams.log_dir}/optimizer.epoch.{epoch}.step.{step}.rank.{optimizer_rank}.pt"
scheduler_save_file_name = f"{self.hparams.log_dir}/scheduler.epoch.{epoch}.step.{step}.rank.{optimizer_rank}.pt"
if isinstance(self.model, DDP):
if self.use_lora:
state_dic = lora.lora_state_dict(self.model.module)
# add output_model to state_dic
output_model_state_dic = self.model.module.output_model.state_dict()
for key, value in output_model_state_dic.items():
state_dic[f"module.output_model.{key}"] = value
torch.save(state_dic, model_save_file_name)
else:
torch.save(self.model.module.state_dict(), model_save_file_name)
else:
if self.use_lora:
state_dic = lora.lora_state_dict(self.model)
# add output_model to state_dic
output_model_state_dic = self.model.output_model.output_network.state_dict()
for key, value in output_model_state_dic.items():
state_dic[f"output_model.output_network.{key}"] = value
torch.save(state_dic, model_save_file_name)
else:
torch.save(self.model.state_dict(), model_save_file_name)
if save_optimizer:
torch.save(self.optimizer.state_dict(), optimizer_save_file_name)
torch.save(self.scheduler.state_dict(), scheduler_save_file_name)
def write_optimizer(self, epoch=None, step=None, optimizer_rank=None):
if epoch is None:
if step is None:
optimizer_save_file_name = f"{self.hparams.log_dir}/optimizer.epoch.{self.current_epoch}.step.{self.global_step}.rank.{optimizer_rank}.pt"
scheduler_save_file_name = f"{self.hparams.log_dir}/scheduler.epoch.{self.current_epoch}.step.{self.global_step}.rank.{optimizer_rank}.pt"
else:
optimizer_save_file_name = f"{self.hparams.log_dir}/optimizer.step.{step}.rank.{optimizer_rank}.pt"
scheduler_save_file_name = f"{self.hparams.log_dir}/scheduler.step.{step}.rank.{optimizer_rank}.pt"
else:
if step is None:
optimizer_save_file_name = f"{self.hparams.log_dir}/optimizer.epoch.{epoch}.rank.{optimizer_rank}.pt"
scheduler_save_file_name = f"{self.hparams.log_dir}/scheduler.epoch.{epoch}.rank.{optimizer_rank}.pt"
else:
optimizer_save_file_name = f"{self.hparams.log_dir}/optimizer.epoch.{epoch}.step.{step}.rank.{optimizer_rank}.pt"
scheduler_save_file_name = f"{self.hparams.log_dir}/scheduler.epoch.{epoch}.step.{step}.rank.{optimizer_rank}.pt"
torch.save(self.optimizer.state_dict(), optimizer_save_file_name)
torch.save(self.scheduler.state_dict(), scheduler_save_file_name)
def load_model(self, epoch=None, step=None, update_count=False):
# if epoch or step is 0, don't load model
if (epoch is not None and epoch == 0) or (step is not None and step == 0):
return
if epoch is None:
if step is None:
_state_dict = torch.load(
f"{self.hparams.log_dir}/model.epoch.{self.current_epoch}.step.{self.global_step}.pt",
maplocation=self.device
)
else:
_state_dict = torch.load(
f"{self.hparams.log_dir}/model.step.{step}.pt",
map_location=self.device
)
if update_count:
self.global_step = step
self.current_epoch = step // self.batchs_per_epoch
else:
if step is None:
_state_dict = torch.load(
f"{self.hparams.log_dir}/model.epoch.{epoch}.pt",
map_location=self.device
)
if update_count:
self.current_epoch = epoch
self.global_step = epoch * self.batchs_per_epoch
else:
_state_dict = torch.load(
f"{self.hparams.log_dir}/model.epoch.{epoch}.step.{step}.pt",
map_location=self.device
)
if update_count:
self.current_epoch = epoch
self.global_step = step
_state_dict_is_ddp = list(_state_dict.keys())[0].startswith("module.")
if isinstance(self.model, DDP):
if _state_dict_is_ddp:
self.model.load_state_dict(_state_dict, strict=self.use_lora==False)
else:
self.model.module.load_state_dict(_state_dict, strict=self.use_lora==False)
else:
if _state_dict_is_ddp:
# create new OrderedDict that does not contain `module.`
from collections import OrderedDict
new_state_dict = OrderedDict()
for k, v in _state_dict.items():
name = k[7:] # remove `module.`
new_state_dict[name] = v
# load params
self.model.load_state_dict(new_state_dict, strict=self.use_lora==False)
else:
self.model.load_state_dict(_state_dict, strict=self.use_lora==False)
def load_optimizer(self, epoch=None, step=None, optimizer_rank=0):
if epoch is None:
if step is None:
optimizer_state_dict = torch.load(
f"{self.hparams.log_dir}/optimizer.epoch.{self.current_epoch}.step.{self.global_step}.rank.{optimizer_rank}.pt",
maplocation=self.device
)
scheduler_state_dict = torch.load(
f"{self.hparams.log_dir}/scheduler.epoch.{self.current_epoch}.step.{self.global_step}.rank.{optimizer_rank}.pt",
maplocation=self.device
)
else:
optimizer_state_dict = torch.load(
f"{self.hparams.log_dir}/optimizer.step.{step}.rank.{optimizer_rank}.pt",
map_location=self.device
)
scheduler_state_dict = torch.load(
f"{self.hparams.log_dir}/scheduler.step.{step}.rank.{optimizer_rank}.pt",
map_location=self.device
)
else:
if step is None:
optimizer_state_dict = torch.load(
f"{self.hparams.log_dir}/optimizer.epoch.{epoch}.rank.{optimizer_rank}.pt",
map_location=self.device
)
scheduler_state_dict = torch.load(
f"{self.hparams.log_dir}/scheduler.epoch.{epoch}.rank.{optimizer_rank}.pt",
map_location=self.device
)
else:
optimizer_state_dict = torch.load(
f"{self.hparams.log_dir}/optimizer.epoch.{epoch}.step.{step}.rank.{optimizer_rank}.pt",
map_location=self.device
)
scheduler_state_dict = torch.load(
f"{self.hparams.log_dir}/scheduler.epoch.{epoch}.step.{step}.rank.{optimizer_rank}.pt",
map_location=self.device
)
self.optimizer.load_state_dict(optimizer_state_dict)
self.scheduler.load_state_dict(scheduler_state_dict)
def _reset_predictions_dict(self):
self.predictions = {
"y": [],
}
def _reset_losses_dict(self):
self.losses = {
"train": [],
"val": [],
"test": [],
"train_y": [],
"val_y": [],
"test_y": [],
}
def _reset_val_losses_dict(self):
self.losses["val"] = []
self.losses["val_y"] = []
def setup(rank, world_size):
os.environ['MASTER_ADDR'] = 'localhost'
os.environ['MASTER_PORT'] = '15433'
# initialize the process group
dist.init_process_group("gloo", rank=rank, world_size=world_size)
def cleanup():
dist.destroy_process_group()
def data_distributed_parallel_gpu(rank, model, hparams, dataset_att, dataset_extra_args, trainer_fn=None, checkpoint_epoch=None):
# set up training processes
# Currently have bug if batch size does not match
global result_dict
if isinstance(hparams, dict):
# If using hp_tune, then hparams is a dict
hparams = sn(**hparams)
torch.set_num_threads(6)
world_size = hparams.ngpus
epochs = hparams.num_epochs
save_every_step = hparams.num_save_batches
save_every_epoch = hparams.num_save_epochs
setup(rank, world_size)
device = f'cuda:{rank}'
torch.cuda.set_per_process_memory_fraction(1.0, rank)
if hparams.dataset.startswith("FullGraph"):
model = torch.compile(model.to(device))
print(f'Compiled model in rank {rank}')
else:
model = model.to(device)
ddp_model = DDP(model, device_ids=[rank], output_device=rank, find_unused_parameters=hparams.model.startswith("lora"))
ddp_model.train()
# create dataset
print(f'Begin loading dataset in rank {rank}')
dataset = getattr(data, hparams.dataset)(
data_file=f"{hparams.data_file_train_ddp_prefix}.{rank}.csv",
gpu_id=rank,
**dataset_att,
**dataset_extra_args,
)
print(f'Loaded dataset in rank {rank}')
trainer = trainer_fn(hparams=hparams, model=ddp_model, dataset=dataset, device_id=rank)
print(f"number of trainable parameters: {sum(p.numel() for p in trainer.model.parameters() if p.requires_grad)}, " +
f"percentage = {sum(p.numel() for p in trainer.model.parameters() if p.requires_grad) / sum(p.numel() for p in trainer.model.parameters())}")
# dry run to update optimizer and scheduler to the checkpoint epoch
if checkpoint_epoch is not None:
while trainer.current_epoch < checkpoint_epoch - 1:
epoch_start_time = time.time()
# trainer.training_epoch_begin()
# trainer.training_epoch_end()
trainer.current_epoch += 1
epoch_end_time = time.time()
print(f"Dry run load: Epoch {trainer.current_epoch} time: ", epoch_end_time - epoch_start_time)
dist.barrier()
# Set up training data set
trainer.training_epoch_end()
trainer.load_model(epoch=checkpoint_epoch, update_count=True)
trainer.load_optimizer(epoch=checkpoint_epoch, optimizer_rank=rank)
print(f"Finished dry run, loaded model from epoch {checkpoint_epoch}")
else:
print("No checkpoint epoch, start from scratch")
checkpoint_epoch = 0
# begin training
dist.barrier()
with Join([trainer.model]):
for i in range(checkpoint_epoch, epochs):
epoch_start_time = time.time()
train_finished = False
trainer.training_epoch_begin()
while not train_finished:
try:
batch_start_time = time.time()
loss = trainer.training_step()
if trainer.global_step % hparams.num_steps_update == 0:
dist.barrier()
# only update every num_steps_update steps, to save memory
trainer.optimizer_step(loss)
batch_end_time = time.time()
print(f"Rank {rank} batch {trainer.global_step} time: {batch_end_time - batch_start_time}")
if trainer.global_step % save_every_step == 0:
if rank == 0:
trainer.write_model(step=trainer.global_step)
# validate every save_every_step steps
if trainer.val_dataset is not None:
val_finished = False
val_begin_time = time.time()
trainer.validation_epoch_begin()
while not val_finished:
try:
trainer.validation_step()
except StopIteration:
val_finished = True
val_end_time = time.time()
dist.barrier()
result_dict = trainer.validation_epoch_end(reset_train_loss=True)
print(f"Rank {rank} batch {trainer.global_step} result: {result_dict}")
with open(
f"{hparams.log_dir}/result_dict.batch.{trainer.global_step}.ddp_rank.{rank}.json", "w"
) as f:
json.dump(result_dict, f)
dist.barrier()
all_val_loss = []
for k in range(world_size):
with open(
f"{hparams.log_dir}/result_dict.batch.{trainer.global_step}.ddp_rank.{k}.json", "r"
) as f:
if trainer.val_dataset is not None:
all_val_loss.append(json.load(f)["val_loss"])
else:
# train is val
all_val_loss.append(json.load(f)["train_loss"])
print(f"Batch {trainer.global_step} all val loss: {np.mean(all_val_loss)}")
print(f"Batch {trainer.global_step} val time: {val_end_time - val_begin_time}")
trainer.scheduler_step(np.mean(all_val_loss))
dist.barrier()
except StopIteration:
train_finished = True
# if remain unupdated parameters, update them
if not trainer.updated:
trainer.optimizer_step(loss)
dist.barrier()
# validate every epoch
if trainer.val_dataset is not None:
val_finished = False
trainer.validation_epoch_begin()
while not val_finished:
try:
trainer.validation_step()
dist.barrier()
except StopIteration:
val_finished = True
result_dict = trainer.validation_epoch_end()
print(f"Rank {rank} epoch {i} result: {result_dict}")
with open(f"{hparams.log_dir}/result_dict.epoch.{i}.ddp_rank.{rank}.json", "w") as f:
json.dump(result_dict, f)
# take all val loss together
dist.barrier()
trainer.training_epoch_end()
epoch_end_time = time.time()
print(f"Epoch {i} time: ", epoch_end_time - epoch_start_time)
dist.barrier()
if trainer.current_epoch % save_every_epoch == 0:
if rank == 0:
trainer.write_model(epoch=trainer.current_epoch, save_optimizer=True, optimizer_rank=rank)
else:
trainer.write_optimizer(epoch=trainer.current_epoch, optimizer_rank=rank)
# delete any hdf5 files or lmdb files generated in trainer.dataset
trainer.dataset.clean_up()
cleanup()
# return all_losses
return trainer
def single_thread_gpu(rank, model, hparams, dataset, trainer_fn=None, checkpoint_epoch=None, trial_id=None):
# set up training processes
# Currently have bug if batch size does not match
if isinstance(hparams, dict):
# If using hp_tune, then hparams is a dict
hparams = sn(**hparams)
# if trial_id is not None, means we are in the hp_tune mode, we need to create subdirectory for this trial
if trial_id is not None:
print(f"Trial id: {trial_id}")
hparams.log_dir = f"{hparams.log_dir}/trial.{trial_id}"
os.makedirs(hparams.log_dir, exist_ok=True)
if hparams.hp_tune:
from ray.air import Checkpoint, session
epochs = hparams.num_epochs
save_every_step = hparams.num_save_batches
save_every_epoch = hparams.num_save_epochs
device = f'cuda:{rank}'
torch.cuda.set_per_process_memory_fraction(1.0, rank)
# if hparams.dataset.startswith("FullGraph"):
# model = torch.compile(model.to(device))
# print(f'Compiled model in rank {rank}')
# else:
model = model.to(device)
model.train()
trainer = trainer_fn(hparams=hparams, model=model, dataset=dataset, device_id=rank)
print(f"number of trainable parameters: {sum(p.numel() for p in trainer.model.parameters() if p.requires_grad)}, " +
f"percentage = {sum(p.numel() for p in trainer.model.parameters() if p.requires_grad) / sum(p.numel() for p in trainer.model.parameters())}")
# begin training
if checkpoint_epoch is not None:
while trainer.current_epoch < checkpoint_epoch:
epoch_start_time = time.time()
trainer.training_epoch_begin()
trainer.training_epoch_end()
epoch_end_time = time.time()
print(f"Dry run load: Epoch {trainer.current_epoch} time: ", epoch_end_time - epoch_start_time)
trainer.load_model(epoch=checkpoint_epoch, update_count=True)
trainer.load_optimizer(epoch=checkpoint_epoch, optimizer_rank=rank)
print(f"Finished dry run, loaded model from epoch {checkpoint_epoch}")
else:
print("No checkpoint epoch, start from scratch")
checkpoint_epoch = 0
for i in range(checkpoint_epoch, epochs):
epoch_start_time = time.time()
train_finished = False
trainer.training_epoch_begin()
while not train_finished:
try:
batch_start_time = time.time()
loss = trainer.training_step()
if trainer.global_step % hparams.num_steps_update == 0:
# only update every num_steps_update steps, to save memory
trainer.optimizer_step(loss)
batch_end_time = time.time()
print(f"Rank {rank} batch {trainer.global_step} time: {batch_end_time - batch_start_time}")
if trainer.global_step % save_every_step == 0:
trainer.write_model(step=trainer.global_step)
# validate every save_every_step steps
val_finished = False
val_start_time = time.time()
trainer.validation_epoch_begin()
while not val_finished:
try:
trainer.validation_step()
except StopIteration:
val_finished = True
result_dict = trainer.validation_epoch_end()
print(f"Rank {rank} batch {trainer.global_step} result: {result_dict}")
with open(
f"{hparams.log_dir}/result_dict.batch.{trainer.global_step}.ddp_rank.{rank}.json", "w"
) as f:
json.dump(result_dict, f)
all_val_loss = result_dict["val_loss"]
print(f"Batch {trainer.global_step} all val loss: {all_val_loss}")
trainer.scheduler_step(all_val_loss)
# if in the haparameter tuning mode, then save the model to the checkpoint directory
if hparams.hp_tune:
checkpoint_data = {
"epoch": trainer.current_epoch,
"batch": trainer.global_step,
"net_state_dict": trainer.model.state_dict(),
"optimizer_state_dict": trainer.optimizer.state_dict(),
"scheduler_state_dict": trainer.scheduler.state_dict(),
}
checkpoint = Checkpoint.from_dict(checkpoint_data)
session.report(
{"loss": all_val_loss},
checkpoint=checkpoint,
)
val_end_time = time.time()
print(f"Rank {rank} batch {trainer.global_step} validation time: {val_end_time - val_start_time}")
except StopIteration:
train_finished = True
# if remain unupdated parameters, update them
if not trainer.updated:
trainer.optimizer_step(loss)
# validate every epoch
val_finished = False
trainer.validation_epoch_begin()
while not val_finished:
try:
trainer.validation_step()
except StopIteration:
val_finished = True
result_dict = trainer.validation_epoch_end()
print(f"Rank {rank} epoch {i} result: {result_dict}")
with open(f"{hparams.log_dir}/result_dict.epoch.{i}.ddp_rank.{rank}.json", "w") as f:
json.dump(result_dict, f)
trainer.training_epoch_end()
# if in the haparameter tuning mode, then save the model to the checkpoint directory
all_val_loss = result_dict["val_loss"]
if hparams.hp_tune:
checkpoint_data = {
"epoch": trainer.current_epoch,
"batch": trainer.global_step,
"net_state_dict": trainer.model.state_dict(),
"optimizer_state_dict": trainer.optimizer.state_dict(),
"scheduler_state_dict": trainer.scheduler.state_dict(),
}
checkpoint = Checkpoint.from_dict(checkpoint_data)
session.report(
{"loss": all_val_loss},
checkpoint=checkpoint,
)
epoch_end_time = time.time()
print(f"Epoch {i} time: ", epoch_end_time - epoch_start_time)
if trainer.current_epoch % save_every_epoch == 0:
trainer.write_model(epoch=trainer.current_epoch, save_optimizer=True, optimizer_rank=rank)
# return all_losses
# clean up the dataset
trainer.dataset.clean_up()
return trainer
def single_thread_gpu_4_fold(rank, model, hparams, dataset, trainer_fn=None, checkpoint_epoch=None):
# set up training processes
# do 4 fold cross validation, the method is, add a 'split' column to dataset, and then split the dataset into 4 parts
# for each part, we train on the other 3 parts and validate on this part
# each part has its own trainer and log dir
if isinstance(hparams, dict):
# If using hp_tune, then hparams is a dict
hparams = sn(**hparams)
# if trial_id is not None, means we are in the hp_tune mode, we need to create subdirectory for this trial
# 4 fold cross validation is not supported in hp_tune mode
# first generate the split column, use seed 0 as default
np.random.seed(0)
# we have to make split take both label into account
gof_indices = dataset.data.index[dataset.data["score"] == 1]
lof_indices = dataset.data.index[dataset.data["score"] == -1]
# random split the gof_indices and lof_indices into 4 parts
# have to give exact number of indices to each part, as sometimes it is not evenly divided
gof_fold_split_sz = max(len(gof_indices) // 4, 1)
lof_fold_split_sz = max(len(lof_indices) // 4, 1)
gof_fold_split = np.split(np.random.permutation(gof_indices), [gof_fold_split_sz, 2*gof_fold_split_sz, 3*gof_fold_split_sz])
lof_fold_split = np.split(np.random.permutation(lof_indices), [lof_fold_split_sz, 2*lof_fold_split_sz, 3*lof_fold_split_sz])
# save the fold_split to the log_dir
with open(f"{hparams.log_dir}/fold_split.pkl", "wb") as f:
pickle.dump([gof_fold_split, lof_fold_split], f)
main_log_dir = hparams.log_dir
for FOLD in range(4):
print(f"Begin Fold id: {FOLD}")
hparams.log_dir = f"{main_log_dir}/FOLD.{FOLD}/"
hparams.data_split_fn = "_by_anno"
os.makedirs(hparams.log_dir, exist_ok=True)
# modify the dataset to have the split column
dataset_fold = copy.deepcopy(dataset)
# for fold_split == FOLD, assign as 'val', for others, assign as 'train'
dataset_fold.data["split"] = 'train'
# choose the gof_fold_split and lof_fold_split
dataset_fold.data.loc[gof_fold_split[FOLD], "split"] = 'val'
dataset_fold.data.loc[lof_fold_split[FOLD], "split"] = 'val'
epochs = hparams.num_epochs
save_every_step = hparams.num_save_batches
save_every_epoch = hparams.num_save_epochs
# if we found that the model existed for this fold, then skip this fold
if os.path.exists(f"{hparams.log_dir}/model.epoch.{epochs}.pt"):
print(f"Fold {FOLD} already trained, skip")
continue
device = f'cuda:{rank}'
torch.cuda.set_per_process_memory_fraction(1.0, rank)
# have to copy the model to avoid the model being modified by other folds
model_fold = copy.deepcopy(model)
model_fold = model_fold.to(device)
model_fold.train()
trainer = trainer_fn(hparams=hparams, model=model_fold, dataset=dataset_fold, device_id=rank)
print(f"number of trainable parameters: {sum(p.numel() for p in trainer.model.parameters() if p.requires_grad)}, " +
f"percentage = {sum(p.numel() for p in trainer.model.parameters() if p.requires_grad) / sum(p.numel() for p in trainer.model.parameters())}")
# begin training
for i in range(epochs):
epoch_start_time = time.time()
train_finished = False
trainer.training_epoch_begin()
while not train_finished:
try:
batch_start_time = time.time()
loss = trainer.training_step()
if trainer.global_step % hparams.num_steps_update == 0:
# only update every num_steps_update steps, to save memory
trainer.optimizer_step(loss)
batch_end_time = time.time()
print(f"Rank {rank} batch {trainer.global_step} time: {batch_end_time - batch_start_time}")
if trainer.global_step % save_every_step == 0:
trainer.write_model(step=trainer.global_step)
# validate every save_every_step steps
val_finished = False
val_start_time = time.time()
trainer.validation_epoch_begin()
while not val_finished:
try:
trainer.validation_step()
except StopIteration:
val_finished = True
result_dict = trainer.validation_epoch_end()
print(f"Rank {rank} batch {trainer.global_step} result: {result_dict}")
with open(
f"{hparams.log_dir}/result_dict.batch.{trainer.global_step}.ddp_rank.{rank}.json", "w"
) as f:
json.dump(result_dict, f)
all_val_loss = result_dict["val_loss"]
print(f"Batch {trainer.global_step} all val loss: {all_val_loss}")
trainer.scheduler_step(all_val_loss)
# if in the haparameter tuning mode, then save the model to the checkpoint directory
if hparams.hp_tune:
checkpoint_data = {
"epoch": trainer.current_epoch,
"batch": trainer.global_step,
"net_state_dict": trainer.model.state_dict(),
"optimizer_state_dict": trainer.optimizer.state_dict(),
"scheduler_state_dict": trainer.scheduler.state_dict(),
}
checkpoint = Checkpoint.from_dict(checkpoint_data)
session.report(
{"loss": all_val_loss},
checkpoint=checkpoint,
)
val_end_time = time.time()
print(f"Rank {rank} batch {trainer.global_step} validation time: {val_end_time - val_start_time}")
except StopIteration:
train_finished = True
# if remain unupdated parameters, update them
if not trainer.updated:
trainer.optimizer_step(loss)
# validate every epoch
val_finished = False
trainer.validation_epoch_begin()
while not val_finished:
try:
trainer.validation_step()
except StopIteration:
val_finished = True
result_dict = trainer.validation_epoch_end()
print(f"Rank {rank} epoch {i} result: {result_dict}")
with open(f"{hparams.log_dir}/result_dict.epoch.{i}.ddp_rank.{rank}.json", "w") as f:
json.dump(result_dict, f)
trainer.training_epoch_end()
# if in the haparameter tuning mode, then save the model to the checkpoint directory
all_val_loss = result_dict["val_loss"]
if hparams.hp_tune:
checkpoint_data = {
"epoch": trainer.current_epoch,
"batch": trainer.global_step,
"net_state_dict": trainer.model.state_dict(),
"optimizer_state_dict": trainer.optimizer.state_dict(),
"scheduler_state_dict": trainer.scheduler.state_dict(),
}
checkpoint = Checkpoint.from_dict(checkpoint_data)
session.report(
{"loss": all_val_loss},
checkpoint=checkpoint,
)
epoch_end_time = time.time()
print(f"Epoch {i} time: ", epoch_end_time - epoch_start_time)
if trainer.current_epoch % save_every_epoch == 0:
trainer.write_model(epoch=trainer.current_epoch, save_optimizer=True, optimizer_rank=rank)
# return all_losses
# clean up the dataset
trainer.dataset.clean_up()
return trainer
def ray_tune(config, dataset=None, trial_id=None):
args = sn(**config)
model_class = args.model_class
# initialize model
if args.load_model == "None" or args.load_model == "null" or args.load_model is None:
my_model = create_model(config, model_class=model_class)
else:
my_model = create_model_and_load(config, model_class=model_class)
if args.trainer_fn == "PreMode_trainer":
trainer_fn = PreMode_trainer
else:
raise ValueError(f"trainer_fn {args.trainer_fn} not supported")
check_point_epoch = None
return single_thread_gpu(args.gpu_id, my_model, config, dataset, trainer_fn=trainer_fn, checkpoint_epoch=check_point_epoch, trial_id=trial_id) |