File size: 67,392 Bytes
7718235 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 |
import argparse
import json
import os
import subprocess
import pickle
import numpy as np
import pandas as pd
import random
import torch
import torch.multiprocessing as mp
from types import SimpleNamespace as sn
import data
from model import model
from model.model import create_model, create_model_and_load
from model.trainer import data_distributed_parallel_gpu, PreMode_trainer, single_thread_gpu, ray_tune, single_thread_gpu_4_fold
from utils.configs import save_argparse, LoadFromFile
from captum.attr import IntegratedGradients
from functools import partial
def get_args():
parser = argparse.ArgumentParser(description='Training')
# keep first
parser.add_argument('--conf', '-c', type=open, action=LoadFromFile, help='Configuration yaml file')
# data set specific
parser.add_argument('--dataset', default=None, type=str, choices=data.__all__,
help='Name of the dataset')
parser.add_argument('--data-file-train', default=None, type=str,
help='Custom training files')
parser.add_argument('--data-file-train-ddp-prefix', default=None, type=str,
help='Prefix of custom training files if use DDP')
parser.add_argument('--data-file-test', default=None, type=str,
help='Custom testing files')
parser.add_argument('--data-type', default=None, type=str,
help='Data type for the task')
parser.add_argument('--convert-to-onesite', type=bool, default=False,
help='Convert the data to one site-date or not, only works for FullGraph dataset')
parser.add_argument('--loop', type=bool, default=False,
help='Add self loop to nodes or not')
parser.add_argument('--max-num-neighbors', type=int, default=32,
help='Maximum number of neighbors to consider in the network')
parser.add_argument('--node-embedding-type', type=str, default='esm',
help='Node embedding type. Choose from esm, one-hot, one-hot-idx, or aa-5dim')
parser.add_argument('--graph-type', type=str, default='af2',
help='Graph type. Choose from af2 or 1d-neighbor')
parser.add_argument('--add-plddt', type=bool, default=False,
help='Whether to add plddt or not')
parser.add_argument('--scale-plddt', type=bool, default=False,
help='Whether to scale plddt or not')
parser.add_argument('--add-conservation', type=bool, default=False,
help='Whether to add conservation or not')
parser.add_argument('--add-dssp', type=bool, default=False,
help='Whether to add dssp or not')
parser.add_argument('--add-position', type=bool, default=False,
help='Whether to add positional wise encoding or not')
parser.add_argument('--add-sidechain', type=bool, default=False,
help='Whether to add sidechain or not')
parser.add_argument('--use-cb', type=bool, default=False,
help='Whether to use CB as distance or not')
parser.add_argument('--add-msa', type=bool, default=False,
help='Whether to add msa to features or not')
parser.add_argument('--add-msa-contacts', type=bool, default=True,
help='Whether to add msa contacts to features or not')
parser.add_argument('--add-confidence', type=bool, default=False,
help='Whether to add af2 predicted confidence or not')
parser.add_argument('--add-ptm', type=bool, default=False,
help='Whether to add post translational modification information or not')
parser.add_argument('--add-af2-single', type=bool, default=False,
help='Whether to add alphafold single representation or not')
parser.add_argument('--add-af2-pairwise', type=bool, default=False,
help='Whether to add alphafold pairwise representation or not')
parser.add_argument('--loaded-af2-single', type=bool, default=False,
help='Whether to load af2 single representation or not')
parser.add_argument('--loaded-af2-pairwise', type=bool, default=False,
help='Whether to load af2 pairwise representation or not')
parser.add_argument('--loaded-confidence', type=bool, default=False,
help='Whether to load af2 predicted confidence or not')
parser.add_argument('--loaded-msa', type=bool, default=False,
help='Whether to preload msa to features or not')
parser.add_argument('--loaded-esm', type=bool, default=False,
help='Whether to preload esm to features or not')
parser.add_argument('--alt-type', type=str, default='alt',
help='alt type in data, either alt or concat')
parser.add_argument('--computed-graph', type=bool, default=True,
help='Whether to use computed graph or not')
parser.add_argument('--neighbor-type', type=str, default='KNN',
help='The type of neighbor selection. Choose from KNN or radius')
parser.add_argument('--max-len', type=int, default=2251,
help='Maximum length of input sequences')
parser.add_argument('--radius', type=float, default=50,
help='Radius of AA to be selected')
parser.add_argument('--data-augment', type=bool, default=False,
help='Whether to augument data, if so, the data will be augumented in the training process by reverse the ref and alt')
parser.add_argument('--score-transfer', type=bool, default=False,
help='Whether to transfer scer, if so, the score will be transfered to 0, 3')
parser.add_argument('--use-lmdb', type=bool, default=False,
help='Whether to use preloaded lmdb')
# model specific
parser.add_argument('--load-model', type=str, default=None,
help='Restart training using a model checkpoint')
parser.add_argument('--partial-load-model', type=bool, default=False,
help='Partial load model, particullay from maskpredict model using a model checkpoint')
parser.add_argument('--use-output-head', type=bool, default=False,
help='Use output head or not')
parser.add_argument('--model-class', type=str, default=None, choices=model.__all__,
help='Which model to use')
parser.add_argument('--model', type=str, default=None,
help='Which representation model to use')
parser.add_argument('--triangular-update', type=bool, default=True,
help='Whether do triangular update')
parser.add_argument('--alt-projector', type=int, default=None,
help='Alt projector size')
parser.add_argument('--neighbor-embedding', type=bool, default=False,
help='If a neighbor embedding should be applied before interactions')
parser.add_argument('--cutoff-lower', type=float, default=0.0,
help='Lower cutoff in model')
parser.add_argument('--cutoff-upper', type=float, default=5.0,
help='Upper cutoff in model')
parser.add_argument('--x-in-channels', type=int, default=None,
help='x input size, only used if different from x_channels')
parser.add_argument('--x-in-embedding-type', type=str, default=None,
help='x input embedding type, only used if x-in-channels is not None')
parser.add_argument('--x-channels', type=int, default=1280,
help='x embedding size')
parser.add_argument('--x-hidden-channels', type=int, default=640,
help='x hidden size')
parser.add_argument('--vec-in-channels', type=int, default=4,
help='vector embedding size')
parser.add_argument('--vec-channels', type=int, default=64,
help='vector hidden size')
parser.add_argument('--vec-hidden-channels', type=int, default=1280,
help='vector hidden size, must be equal to x_channels')
parser.add_argument('--share-kv', type=bool, default=False,
help='Whether to share key and value')
parser.add_argument('--ee-channels', type=int, default=None,
help='edge-edge update channel that depends on start/end node distances')
parser.add_argument('--distance-influence', type=str, default='both',
help='Which distance influences to use')
parser.add_argument('--num-heads', type=int, default=16,
help='number of attention heads')
parser.add_argument('--num-layers', type=int, default=2,
help='number of layers')
parser.add_argument('--num-edge-attr', type=int, default=1,
help='number of edge attributes')
parser.add_argument('--num-nodes', type=int, default=1,
help='number of nodes')
parser.add_argument('--num-rbf', type=int, default=32,
help='number of radial basis functions')
parser.add_argument('--rbf-type', type=str, default="expnorm",
help='type of radial basis functions')
parser.add_argument('--trainable-rbf', type=bool, default=False,
help='to train rbf or not')
parser.add_argument('--num-workers', type=int, default=10,
help='number of workers')
parser.add_argument('--output-model', type=str, default='EquivariantBinaryClassificationSAGPoolScalar',
help='The type of output model')
parser.add_argument('--reduce-op', type=str, default='mean',
help='The type of reduce operation')
parser.add_argument('--output-dim', type=int, default=1,
help='The dimension of output model')
parser.add_argument('--output-dim-1', type=int, default=1,
help='The first dimension of output model, only used in regression-classification')
parser.add_argument('--output-dim-2', type=int, default=1,
help='The second dimension of output model, only used in regression-classification')
parser.add_argument('--activation', type=str, default='silu',
help='The activation function')
parser.add_argument('--attn-activation', type=str, default='silu',
help='The attention activation function')
parser.add_argument('--drop-out', type=float, default=0.1,
help='Drop out rate at each layer')
parser.add_argument('--use-lora', type=int, default=None,
help='Whether to use lora or not')
# training specific
parser.add_argument('--trainer-fn', type=str, default='PreMode_trainer',
help='trainer function')
parser.add_argument('--freeze-representation', type=bool, default=False,
help='freeze representation module or not')
parser.add_argument('--freeze-representation-but-attention', type=bool, default=False,
help='freeze representation module but without attention, or not')
parser.add_argument('--freeze-representation-but-gru', type=bool, default=False,
help='freeze representation module but without gru, or not')
parser.add_argument('--seed', type=int, default=0,
help='random seed')
parser.add_argument('--seed-with-pl', type=bool, default=False,
help='Initialize with pytorch lightning seed')
parser.add_argument('--lr', type=float, default=1e-5,
help='learning rate')
parser.add_argument('--lr-factor', type=float, default=0.8,
help='factor by which the learning rate will be reduced')
parser.add_argument('--weight-decay', type=float, default=0.0,
help='factor by which the learning rate will be decayed in AdamW, default 0.0')
parser.add_argument('--lr-min', type=float, default=1e-6,
help='minimum learning rate')
parser.add_argument('--lr-patience', type=int, default=2,
help='number of epochs with no improvement after which learning rate will be reduced')
parser.add_argument('--num-steps-update', type=int, default=1,
help='number of steps after which to update the model')
parser.add_argument('--lr-warmup-steps', type=int, default=2000,
help='number of warmup steps for learning rate')
parser.add_argument('--batch-size', type=int, default=6,
help='batch size for training')
parser.add_argument('--ngpus', type=int, default=4,
help='number of gpus to use')
parser.add_argument('--gpu-id', type=int, default=0,
help='default of gpu to use in processing the dataset')
parser.add_argument('--num-epochs', type=int, default=10,
help='number of epochs to train for')
parser.add_argument('--loss-fn', type=str, default='binary_cross_entropy',
help='loss function to use')
parser.add_argument('--y-weight', type=float, default=1.0,
help='weight of y in loss function')
parser.add_argument('--data-split-fn', type=str, default='_by_good_batch',
help='function for splitting data')
parser.add_argument('--contrastive-loss-fn', type=str, default='cosin_contrastive_loss',
help='contrastive loss function to use')
parser.add_argument('--reset-train-dataloader-each-epoch', type=bool, default=True,
help='whether to reset train dataloader each epoch')
parser.add_argument('--reset-train-dataloader-each-epoch-seed', type=bool, default=False,
help='whether to set the seed of shuffle train dataloader each epoch')
parser.add_argument('--test-size', type=int, default=None,
help='size of the test set')
parser.add_argument('--train-size', type=float, default=0.95,
help='fraction of data to use for training')
parser.add_argument('--val-size', type=float, default=0.05,
help='fraction of data to use for validation')
parser.add_argument('--hp-tune', type=bool, default=False,
help='Whether use hyperparameter tuning or not')
parser.add_argument('--adaptive-rounds', type=int, default=6,
help='active learning rounds')
parser.add_argument('--init-fn', type=str, default=None,
help='Initialization function for output model')
# log specific
parser.add_argument('--num-save-epochs', type=int, default=1,
help='number of epochs after which to save the model')
parser.add_argument('--num-save-batches', type=int, default=1000,
help='number of batches after which to save the model')
parser.add_argument('--log-dir', type=str, default='/share/vault/Users/gz2294/RESCVE/CHPs.v1.ct/',
help='directory for saving logs')
# script specific
parser.add_argument('--mode', type=str, default="train_and_test",
help='mode of training')
parser.add_argument('--re-test', type=bool, default=False,
help='re-test the model or not')
parser.add_argument('--test-by', type=str, default='epoch_and_batch',
help='test by batch or epoch')
parser.add_argument('--interpret-by', type=str, default=None,
help='interpret by batch or epoch')
parser.add_argument('--interpret-step', type=int, default=None,
help='interpret step')
parser.add_argument('--interpret-epoch', type=int, default=None,
help='interpret epoch')
parser.add_argument('--out-dir', type=str, default=None,
help='The output directory / file for interpret mode')
parser.add_argument('--interpret-idxes', type=str, default=None,
help='The index of the data point to interpret, split by comma')
parser.add_argument('--save-attn', type=bool, default=False,
help='Whether save attention matrix for interpret mode')
parser.add_argument('--use-ig', type=bool, default=False,
help='Whether to use integrated gradient for interpret mode')
parser.add_argument('--use-jacob', type=bool, default=False,
help='Whether to use jacobian at the output reduce layer for interpret mode')
# aggregate
args = parser.parse_args()
os.makedirs(args.log_dir, exist_ok=True)
if "train" in args.mode:
save_argparse(args, os.path.join(args.log_dir, "input.yaml"), exclude=["conf"])
return args
def main(args, continue_train=False, four_fold=False):
if args.seed_with_pl:
import pytorch_lightning as pl
pl.seed_everything(args.seed)
else:
random.seed(args.seed)
np.random.seed(args.seed)
torch.manual_seed(args.seed)
torch.cuda.manual_seed_all(args.seed)
hparams = vars(args)
model_class = args.model_class
# initialize model
if args.load_model == "None" or args.load_model == "null" or args.load_model is None:
my_model = create_model(hparams, model_class=model_class)
else:
my_model = create_model_and_load(hparams, model_class=model_class)
# TODO: consider implement early stopping
# early_stopping = EarlyStopping("val_loss", patience=args.early_stopping_patience)
dataset_att = {"data_type": args.data_type,
"radius": args.radius,
"max_neighbors": args.max_num_neighbors,
"loop": args.loop,
"shuffle": False,
"node_embedding_type": args.node_embedding_type,
"graph_type": args.graph_type,
"add_plddt": args.add_plddt,
"scale_plddt": args.scale_plddt,
"add_conservation": args.add_conservation,
"add_position": args.add_position,
"add_sidechain": args.add_sidechain,
"add_dssp": args.add_dssp,
"add_msa": args.add_msa,
"add_confidence": args.add_confidence,
"add_msa_contacts": args.add_msa_contacts,
"add_ptm": args.add_ptm,
"add_af2_single": args.add_af2_single,
"add_af2_pairwise": args.add_af2_pairwise,
"loaded_af2_single": args.loaded_af2_single,
"loaded_af2_pairwise": args.loaded_af2_pairwise,
"loaded_msa": args.loaded_msa,
"loaded_esm": args.loaded_esm,
"loaded_confidence": args.loaded_confidence,
"data_augment": args.data_augment,
"score_transfer": args.score_transfer,
"alt_type": args.alt_type,
"computed_graph": args.computed_graph,
"neighbor_type": args.neighbor_type,
"max_len": args.max_len,
"use_lmdb": args.use_lmdb,}
if "Onesite" in args.dataset:
dataset_att['convert_to_onesite'] = args.convert_to_onesite
if args.trainer_fn == "PreMode_trainer":
trainer_fn = PreMode_trainer
dataset_extra_args = {}
else:
raise ValueError(f"trainer_fn {args.trainer_fn} not supported")
if continue_train:
for i in range(args.num_epochs):
if os.path.exists(os.path.join(args.log_dir, f"result_dict.epoch.{i}.ddp_rank.0.json")) and os.path.exists(os.path.join(args.log_dir, f"model.epoch.{i+1}.pt")):
continue
else:
break
if i == args.num_epochs - 1:
print(f"model for epoch {args.num_epochs} already exists")
return
if i == 0:
check_point_epoch = None
else:
check_point_epoch = i
print(f"continue training from epoch {check_point_epoch}")
else:
check_point_epoch = None
if args.ngpus > 1:
assert four_fold is False, "fold 4 is not supported in distributed training"
mp.spawn(data_distributed_parallel_gpu,
args=(my_model, args, dataset_att, dataset_extra_args, trainer_fn, check_point_epoch),
nprocs=args.ngpus,
join=True)
else:
dataset = getattr(data, args.dataset)(
data_file=args.data_file_train,
**dataset_att,
**dataset_extra_args,
)
if four_fold:
single_thread_gpu_4_fold(args.gpu_id, my_model, args, dataset, trainer_fn, check_point_epoch)
else:
single_thread_gpu(args.gpu_id, my_model, args, dataset, trainer_fn, check_point_epoch)
def adaptive_main(args):
if args.seed_with_pl:
import pytorch_lightning as pl
pl.seed_everything(args.seed)
else:
random.seed(args.seed)
np.random.seed(args.seed)
torch.manual_seed(args.seed)
torch.cuda.manual_seed_all(args.seed)
hparams = vars(args)
model_class = args.model_class
# initialize model
if args.load_model == "None" or args.load_model == "null" or args.load_model is None:
my_model = create_model(hparams, model_class=model_class)
else:
my_model = create_model_and_load(hparams, model_class=model_class)
dataset_att = {"data_type": args.data_type,
"radius": args.radius,
"max_neighbors": args.max_num_neighbors,
"loop": args.loop,
"shuffle": False,
"node_embedding_type": args.node_embedding_type,
"graph_type": args.graph_type,
"add_plddt": args.add_plddt,
"scale_plddt": args.scale_plddt,
"add_conservation": args.add_conservation,
"add_position": args.add_position,
"add_sidechain": args.add_sidechain,
"add_dssp": args.add_dssp,
"add_msa": args.add_msa,
"add_confidence": args.add_confidence,
"add_msa_contacts": args.add_msa_contacts,
"add_ptm": args.add_ptm,
"add_af2_single": args.add_af2_single,
"add_af2_pairwise": args.add_af2_pairwise,
"loaded_af2_single": args.loaded_af2_single,
"loaded_af2_pairwise": args.loaded_af2_pairwise,
"loaded_msa": args.loaded_msa,
"loaded_esm": args.loaded_esm,
"loaded_confidence": args.loaded_confidence,
"data_augment": args.data_augment,
"score_transfer": args.score_transfer,
"alt_type": args.alt_type,
"computed_graph": args.computed_graph,
"neighbor_type": args.neighbor_type,
"max_len": args.max_len,}
if "Onesite" in args.dataset:
dataset_att['convert_to_onesite'] = args.convert_to_onesite
if args.trainer_fn == "PreMode_trainer":
trainer_fn = PreMode_trainer
dataset_extra_args = {}
else:
raise ValueError(f"trainer_fn {args.trainer_fn} not supported")
# read in the data_file
try:
data_file = pd.read_csv(args.data_file_train, index_col=0, low_memory=False)
data_file_test = pd.read_csv(args.data_file_test, index_col=0, low_memory=False)
except UnicodeDecodeError:
data_file = pd.read_csv(args.data_file_train, index_col=0, encoding='ISO-8859-1')
data_file_test = pd.read_csv(args.data_file_test, index_col=0, encoding='ISO-8859-1')
# if split fn is by_anno, start from beginning
if args.data_split_fn == "_by_anno":
# pick the data file 'split' column with 'train' or 'val' value
data_file_train = data_file[data_file['split'].isin(['train', 'val'])]
size_each_round = data_file_train['split'].value_counts()['train']
data_file_candidate_train = data_file[~data_file['split'].isin(['train', 'val'])]
else:
# randomly select 10% of the data as train set
data_file_train = data_file.sample(frac=0.1, random_state=args.seed)
size_each_round = data_file_train.shape[0]
data_file_candidate_train = data_file.drop(data_file_train.index)
# save the train and test data file
# make sure the log_dir exists
base_log_dir = args.log_dir
os.makedirs(base_log_dir, exist_ok=True)
if args.data_split_fn == "_by_anno":
# val_size_each_round = sum(data_file_train['split'] == 'val')
val_size_each_round = 0
else:
val_size_each_round = int(size_each_round * args.val_size)
for i in range(args.adaptive_rounds):
# we only do 6 rounds of adaptive learning, suppose the init amount is 10%
# for each round, we train the model on the train set, and test on the test set
# then we select the top 10% of the test set as the new train set
# and the rest as the new test set
# set the log_dir for each round
if os.path.exists(os.path.join(base_log_dir, f"candidate.training.round.{i}.csv")):
print(f"round {i} already exists, skip")
x_embed_df = pd.read_csv(os.path.join(base_log_dir, f"candidate.training.round.{i}.csv"), index_col=0)
# read the results from the previous round
data_file_train = pd.read_csv(os.path.join(base_log_dir, f"data_file_train.round.{i}.csv"), index_col=0)
data_file_candidate_train = pd.read_csv(os.path.join(base_log_dir, f"data_file_candidate.round.{i}.csv"), index_col=0)
else:
args.log_dir = os.path.join(base_log_dir, f"round_{i}")
os.makedirs(args.log_dir, exist_ok=True)
data_file_train.to_csv(os.path.join(base_log_dir, f"data_file_train.round.{i}.csv"))
data_file_candidate_train.to_csv(os.path.join(base_log_dir, f"data_file_candidate.round.{i}.csv"))
dataset = getattr(data, args.dataset)(
data_file=data_file_train,
**dataset_att,
**dataset_extra_args,
)
# check if model check point exists
for e in range(args.num_epochs):
if os.path.exists(os.path.join(args.log_dir, f"result_dict.epoch.{e}.ddp_rank.0.json")) and os.path.exists(os.path.join(args.log_dir, f"model.epoch.{e+1}.pt")):
continue
else:
break
if e == args.num_epochs - 1:
print(f"model for epoch {args.num_epochs} already exists")
else:
if e == 0:
check_point_epoch = None
else:
check_point_epoch = e
print(f"continue training from epoch {check_point_epoch}")
single_thread_gpu(args.gpu_id, my_model, args, dataset, trainer_fn, check_point_epoch)
# test the model on the test set first
dataset = getattr(data, args.dataset)(
data_file=data_file_test,
**dataset_att,
**dataset_extra_args,
)
# add interpret mode here, add some args
args.interpret_by = "both"
x_embed_df = interpret_core(args, dataset, idxs=None, epoch=None, step=None)
x_embed_df.to_csv(os.path.join(base_log_dir, f"testing.round.{i}.csv"))
# test the model on the candidate train set
# test the model on the test set first
dataset = getattr(data, args.dataset)(
data_file=data_file_candidate_train,
**dataset_att,
**dataset_extra_args,
)
x_embed_df = interpret_core(args, dataset, idxs=None, epoch=None, step=None)
x_embed_df.to_csv(os.path.join(base_log_dir, f"candidate.training.round.{i}.csv"))
# for columns starts with logits_var, we first calculate the rank percentiles
x_embed_df = x_embed_df.apply(lambda x: x.rank(pct=True) if isinstance(x.name, str) and x.name.startswith("logits_var") else x)
# then we calculate the row-wise mean of the rank percentiles
x_embed_df_rank = x_embed_df.loc[:, x_embed_df.columns.str.startswith("logits_var")].mean(axis=1)
# then we select the top `size_each_round` of the test set as the new train set
# and the rest as the new test set
# if the data_split_fn is by_anno, we need to make sure the new train set "split" column is "train"
to_pick_threshold = 1 - size_each_round / data_file_candidate_train.shape[0]
if args.data_split_fn == "_by_anno":
data_file_train_new = data_file_candidate_train[x_embed_df_rank > to_pick_threshold]
data_file_train_new['split'] = 'train'
# randomly select certain amount of data from the candidate train set as new validation set
# data_file_train_new['split'][np.random.choice(data_file_train_new.index, val_size_each_round)] = 'val'
data_file_candidate_train = data_file_candidate_train[x_embed_df_rank <= to_pick_threshold]
else:
data_file_train_new = data_file_candidate_train[x_embed_df_rank > to_pick_threshold]
data_file_candidate_train = data_file_candidate_train[x_embed_df_rank <= to_pick_threshold]
# we need to drop columns in data_file_train_new that are not in data_file_train
data_file_train_new = data_file_train_new[data_file_train.columns]
# then we concat the new train set to the old train set
data_file_train = pd.concat([data_file_train, data_file_train_new], axis=0)
def hp_tune(args):
# hyperparameter tuning, too expensive thus only do for some genes
# import ray has to be here, otherwise will cause error for other functions
import ray
from ray import tune
from ray.tune.analysis import ExperimentAnalysis
from ray.tune.schedulers import ASHAScheduler
random.seed(args.seed)
np.random.seed(args.seed)
torch.manual_seed(args.seed)
torch.cuda.manual_seed_all(args.seed)
# transfer args to dict
hparams = vars(args)
# early_stopping = EarlyStopping("val_loss", patience=args.early_stopping_patience)
dataset_att = {"data_type": args.data_type,
"radius": args.radius,
"max_neighbors": args.max_num_neighbors,
"loop": args.loop,
"shuffle": False,
"node_embedding_type": args.node_embedding_type,
"graph_type": args.graph_type,
"add_plddt": args.add_plddt,
"scale_plddt": args.scale_plddt,
"add_conservation": args.add_conservation,
"add_position": args.add_position,
"add_sidechain": args.add_sidechain,
"add_dssp": args.add_dssp,
"add_msa": args.add_msa,
"add_confidence": args.add_confidence,
"add_msa_contacts": args.add_msa_contacts,
"add_ptm": args.add_ptm,
"add_af2_single": args.add_af2_single,
"add_af2_pairwise": args.add_af2_pairwise,
"loaded_af2_single": args.loaded_af2_single,
"loaded_af2_pairwise": args.loaded_af2_pairwise,
"loaded_msa": args.loaded_msa,
"loaded_esm": args.loaded_esm,
"loaded_confidence": args.loaded_confidence,
"data_augment": args.data_augment,
"score_transfer": args.score_transfer,
"alt_type": args.alt_type,
"computed_graph": args.computed_graph,
"neighbor_type": args.neighbor_type,
"max_len": args.max_len,}
dataset = getattr(data, args.dataset)(
data_file=args.data_file_train,
**dataset_att,
)
# transform args to dict, which is already done, named hparams
# set up ray tune configs
config = {
"lr": tune.loguniform(1e-5, 1e-2),
"lr_min": tune.loguniform(1e-8, 1e-5),
"batch_size": tune.choice([2, 4, 8, 16]),
"drop_out": tune.uniform(0.0, 0.9),
"num_save_batches": tune.choice([50, 100, 200, 400]),
}
# add the rest of hparams to config
for k, v in hparams.items():
if k not in config:
config[k] = v
# add a param in config to indicate the trainer fn whether to use tune or not
config["hp_tune"] = True
scheduler = ASHAScheduler(
metric="loss",
mode="min",
max_t=args.num_epochs,
grace_period=3,
reduction_factor=2,
)
ray.init(num_cpus=20, num_gpus=torch.cuda.device_count())
result: ExperimentAnalysis = tune.run(
partial(ray_tune, dataset=dataset),
resources_per_trial={"cpu": 4, "gpu": 1},
config=config,
num_samples=25,
scheduler=scheduler,
verbose=1,
local_dir=args.log_dir,
checkpoint_at_end=True,
)
best_trial = result.get_best_trial("loss", "min", "all")
best_trial_id = best_trial.trial_id
print(f"Best trial config: {best_trial.config}")
print(f"Best trial id: {best_trial_id}")
# create symbolic link from the best trial to the log dir
print(f"Best trial final validation loss: {best_trial.last_result['loss']}")
# initialize model
if args.load_model == "None" or args.load_model == "null" or args.load_model is None:
my_model = create_model(best_trial.config, model_class=args.model_class)
else:
my_model = create_model_and_load(best_trial.config, model_class=args.model_class)
if args.dataset.startswith("FullGraph"):
my_model = torch.compile(my_model.to(f"cuda:{args.gpu_id}"))
else:
my_model = my_model.to(f"cuda:{args.gpu_id}")
best_checkpoint = best_trial.checkpoint.to_air_checkpoint()
best_checkpoint_data = best_checkpoint.to_dict()
my_model.load_state_dict(best_checkpoint_data["net_state_dict"])
torch.save(my_model.state_dict(), f'{args.log_dir}/model.hp_tune.pt')
def _test(args):
if args.seed_with_pl:
import pytorch_lightning as pl
pl.seed_everything(args.seed)
else:
random.seed(args.seed)
np.random.seed(args.seed)
torch.manual_seed(args.seed)
torch.cuda.manual_seed_all(args.seed)
hparams = vars(args)
model_class = args.model_class
# initialize model
my_model = create_model(hparams, model_class=model_class)
dataset_att = {"data_type": args.data_type,
"radius": args.radius,
"max_neighbors": args.max_num_neighbors,
"loop": args.loop,
"shuffle": False,
"node_embedding_type": args.node_embedding_type,
"graph_type": args.graph_type,
"add_plddt": args.add_plddt,
"scale_plddt": args.scale_plddt,
"add_conservation": args.add_conservation,
"add_position": args.add_position,
"add_sidechain": args.add_sidechain,
"add_dssp": args.add_dssp,
"add_msa": args.add_msa,
"add_confidence": args.add_confidence,
"add_msa_contacts": args.add_msa_contacts,
"add_ptm": args.add_ptm,
"add_af2_single": args.add_af2_single,
"add_af2_pairwise": args.add_af2_pairwise,
"loaded_af2_single": args.loaded_af2_single,
"loaded_af2_pairwise": args.loaded_af2_pairwise,
"loaded_msa": args.loaded_msa,
"loaded_esm": args.loaded_esm,
"loaded_confidence": args.loaded_confidence,
"data_augment": args.data_augment,
"score_transfer": args.score_transfer,
"alt_type": args.alt_type,
"computed_graph": args.computed_graph,
"neighbor_type": args.neighbor_type,
"max_len": args.max_len,}
if args.trainer_fn == "PreMode_trainer":
trainer_fn = PreMode_trainer
dataset_extra_args = {}
else:
raise ValueError(f"trainer_fn {args.trainer_fn} not supported")
dataset = getattr(data, args.dataset)(
data_file=args.data_file_test,
**dataset_att,
**dataset_extra_args,
)
my_model = my_model.to(f"cuda:{args.gpu_id}")
my_model.eval()
trainer = trainer_fn(hparams=args, model=my_model, stage="test",
dataset=dataset, device_id=args.gpu_id)
if "epoch" in args.test_by:
# test by epoch
print(f'num_saved_epochs: {args.num_epochs}')
for epoch in range(1, args.num_epochs + 1):
if os.path.exists(os.path.join(args.log_dir, f"test_result.epoch.{epoch}.txt")) and not args.re_test:
print(f"test result for epoch {epoch} already exists")
continue
if os.path.exists(os.path.join(args.log_dir, f"result_dict.epoch.{epoch-1}.ddp_rank.0.json")):
print(f"begin test for epoch {epoch}")
trainer.load_model(epoch=epoch)
test_result_dict, test_result_df = _test_one_epoch(trainer)
with open(os.path.join(args.log_dir, f"test_result.epoch.{epoch}.txt"), "w") as f:
f.write(str(test_result_dict))
test_result_df.to_csv(os.path.join(args.log_dir, f"test_result.epoch.{epoch}.csv"), index=False)
else:
print(f"model for epoch {epoch} not exist")
if "batch" in args.test_by:
# test by batch steps
import numpy as np
train_data_size = subprocess.check_output(f'wc -l {args.data_file_train}', shell=True)
train_data_size = int(str(train_data_size).split(' ')[0][2:]) - 1
num_saved_batches = int(np.floor(np.ceil(np.ceil(train_data_size * args.train_size)
/ args.ngpus / args.batch_size)
* args.num_epochs / args.num_save_batches) + 1)
print(f'num_saved_batches: {num_saved_batches}')
for step in range(args.num_save_batches,
num_saved_batches * args.num_save_batches,
args.num_save_batches):
if os.path.exists(os.path.join(args.log_dir, f"test_result.step.{step}.txt")) and not args.re_test:
print(f"test result for step {step} already exists")
continue
if os.path.exists(os.path.join(args.log_dir, f"result_dict.batch.{step}.ddp_rank.0.json")):
print(f"begin test for step {step}")
trainer.load_model(step=step)
test_result_dict, test_result_df = _test_one_epoch(trainer)
with open(os.path.join(args.log_dir, f"test_result.step.{step}.txt"), "w") as f:
f.write(str(test_result_dict))
test_result_df.to_csv(os.path.join(args.log_dir, f"test_result.step.{step}.csv"), index=False)
else:
print(f"model for step {step} not exists")
continue
# clean up the data sets
trainer.dataset.clean_up()
def _test_one_epoch(trainer):
trainer.testing_epoch_begin()
while True:
try:
trainer.test_step()
except StopIteration:
break
test_result_dict, test_result_df = trainer.testing_epoch_end()
return test_result_dict, test_result_df
def ig_forward(x, trainer, batch, out_idx=0):
# integrated gradient forward
# x: (batch_size, num_nodes, x_channels)
extra_args = batch.to_dict()
# extra_args actually won't be used in the model
for a in ('y', 'x', 'x_mask', 'x_alt', 'pos', 'batch',
'edge_index', 'edge_attr',
'edge_index_star', 'edge_attr_star',
'node_vec_attr'):
if a in extra_args:
del extra_args[a]
out, _, _ = trainer.forward(
x.to(trainer.device),
x_mask=batch.x_mask.to(trainer.device),
x_alt=batch.x_alt.to(trainer.device),
pos=batch.pos.to(trainer.device),
batch=batch.batch.to(trainer.device) if "batch" in batch else None,
edge_index=batch.edge_index.to(trainer.device) if batch.edge_index is not None else None,
edge_index_star=batch.edge_index_star.to(trainer.device) if "edge_index_star" in batch else None,
edge_attr=batch.edge_attr.to(trainer.device) if batch.edge_attr is not None else None,
edge_attr_star=batch.edge_attr_star.to(trainer.device) if "edge_attr_star" in batch else None,
node_vec_attr=batch.node_vec_attr.to(trainer.device),
extra_args=extra_args,
return_attn=False,)
# out is one-dim tensor
# out = out.squeeze()
return out[:, [out_idx, out_idx]]
def interpret(args, idxs=None, epoch=None, step=None, dryrun=False, four_fold=False):
# interpret a dataset by attention, only for the data point of idxs in the dataset
dataset_att = {"data_type": args.data_type,
"radius": args.radius,
"max_neighbors": args.max_num_neighbors,
"loop": args.loop,
"shuffle": False,
"node_embedding_type": args.node_embedding_type,
"graph_type": args.graph_type,
"add_plddt": args.add_plddt,
"scale_plddt": args.scale_plddt,
"add_conservation": args.add_conservation,
"add_position": args.add_position,
"add_sidechain": args.add_sidechain,
"add_dssp": args.add_dssp,
"add_msa": args.add_msa,
"add_confidence": args.add_confidence,
"add_msa_contacts": args.add_msa_contacts,
"add_ptm": args.add_ptm,
"add_af2_single": args.add_af2_single,
"add_af2_pairwise": args.add_af2_pairwise,
"loaded_af2_single": args.loaded_af2_single,
"loaded_af2_pairwise": args.loaded_af2_pairwise,
"loaded_msa": args.loaded_msa,
"loaded_esm": args.loaded_esm,
"loaded_confidence": args.loaded_confidence,
"data_augment": args.data_augment,
"score_transfer": args.score_transfer,
"alt_type": args.alt_type,
"computed_graph": args.computed_graph,
"neighbor_type": args.neighbor_type,
"max_len": args.max_len,}
if args.trainer_fn == "PreMode_trainer_noGraph":
dataset_extra_args = {"padding": args.batch_size > 1}
elif args.trainer_fn == "PreMode_trainer":
dataset_extra_args = {}
elif args.trainer_fn == "PreMode_trainer_SSP":
dataset_extra_args = {}
else:
raise ValueError(f"trainer_fn {args.trainer_fn} not supported")
if dryrun:
dataset = None
else:
dataset = getattr(data, args.dataset)(
data_file=args.data_file_test,
**dataset_att,
**dataset_extra_args,
)
# apply 4 fold cross validation
if four_fold:
main_log_dir = args.log_dir
if idxs is None:
idxs = list(range(len(dataset)))
out_index = dataset.data.index
else:
out_index = dataset.data.index[idxs]
x_embed_df = dataset.data.loc[out_index]
for FOLD in range(4):
# change args log_dir to the fold log_dir
args.log_dir = os.path.join(main_log_dir, f"FOLD.{FOLD}/")
_, ys, min_loss = interpret_core(args, dataset, idxs=idxs, epoch=epoch, step=step, dryrun=dryrun, four_fold=True)
# change ys columns to original column name + '.FOLD.{FOLD}'
ys.columns = [f"{c}.FOLD.{FOLD}" for c in ys.columns]
x_embed_df = pd.concat([x_embed_df, ys], axis=1)
x_embed_df[f"min_loss.FOLD.{FOLD}"] = min_loss
else:
x_embed_df = interpret_core(args, dataset, idxs=idxs, epoch=epoch, step=step, dryrun=dryrun)
if dryrun:
return
if args.out_dir is None:
args.out_dir = args.log_dir
if not os.path.exists(args.out_dir) and not args.out_dir.endswith(".csv"):
os.makedirs(args.out_dir)
if args.out_dir.endswith(".csv"):
x_embed_df.to_csv(args.out_dir, index=False)
else:
x_embed_df.to_csv(f"{args.out_dir}/x_embeds.csv", index=False)
def interpret_core(args, dataset, idxs=None, epoch=None, step=None, dryrun=False, four_fold=False):
if args.seed_with_pl:
import pytorch_lightning as pl
pl.seed_everything(args.seed)
else:
random.seed(args.seed)
np.random.seed(args.seed)
torch.manual_seed(args.seed)
torch.cuda.manual_seed_all(args.seed)
hparams = vars(args)
model_class = args.model_class
# initialize model
if args.load_model == "None" or args.load_model == "null" or args.load_model is None:
my_model = create_model(hparams, model_class=model_class)
else:
my_model = create_model_and_load(hparams, model_class=model_class)
if args.trainer_fn == "PreMode_trainer":
trainer_fn = PreMode_trainer
else:
raise ValueError(f"trainer_fn {args.trainer_fn} not supported")
if args.dataset.startswith("FullGraph") and not args.model.startswith("lora"):
my_model = torch.compile(my_model)
if args.hp_tune:
my_model.load_state_dict(torch.load(f'{args.log_dir}/model.hp_tune.pt', map_location=torch.device("cpu")))
my_model.eval()
if dryrun:
trainer = None
else:
trainer = trainer_fn(hparams=args, model=my_model,
stage="test", dataset=dataset, device_id=args.gpu_id)
if not args.hp_tune:
# only load model if not hp_tune
if epoch is not None:
trainer.load_model(epoch=epoch)
min_loss = None
elif step is not None:
trainer.load_model(step=step)
min_loss = None
else:
if args.interpret_by is None:
train_data_size = subprocess.check_output(f'wc -l {args.data_file_train}', shell=True)
train_data_size = int(str(train_data_size).split(' ')[0][2:]) - 1
num_saved_batches = int(np.floor(np.ceil(np.ceil(train_data_size * args.train_size)
/ args.ngpus / args.batch_size)
* args.num_epochs / args.num_save_batches) + 1)
if num_saved_batches > args.num_epochs:
args.interpret_by = "batch"
else:
args.interpret_by = "epoch"
if args.interpret_by == "epoch":
# find the min val loss epoch
val_losses = []
for epoch in range(args.num_epochs):
val_loss = []
for rank in range(args.ngpus):
with open(f"{args.log_dir}/result_dict.epoch.{epoch}.ddp_rank.{rank}.json", "r") as f:
result_dict = json.load(f)
val_loss.append(result_dict["val_loss"])
val_losses.append(np.mean(val_loss))
min_val_loss_epoch = np.argmin(val_losses) + 1
trainer.load_model(epoch=min_val_loss_epoch)
min_loss = np.min(np.array(val_losses)[~np.isnan(val_losses)])
elif args.interpret_by == "batch":
# find the min val loss batch
val_losses = []
train_data_size = subprocess.check_output(f'wc -l {args.data_file_train}', shell=True)
train_data_size = int(str(train_data_size).split(' ')[0][2:]) - 1
num_saved_batches = int(np.floor(np.ceil(np.ceil(train_data_size * args.train_size)
/ args.ngpus / args.batch_size)
* args.num_epochs / args.num_save_batches) + 1)
print(f'num_saved_batches: {num_saved_batches}')
steps = list(range(args.num_save_batches,
num_saved_batches * args.num_save_batches,
args.num_save_batches))
for step in steps:
val_loss = []
for rank in range(args.ngpus):
if (os.path.exists(f"{args.log_dir}/result_dict.batch.{step}.ddp_rank.{rank}.json")):
with open(f"{args.log_dir}/result_dict.batch.{step}.ddp_rank.{rank}.json", "r") as f:
result_dict = json.load(f)
val_loss.append(result_dict["val_loss"])
val_losses.append(np.mean(val_loss))
min_val_loss_batch = steps[np.argmin(np.array(val_losses)[~np.isnan(val_losses)])]
print(f"min_val_loss_batch: {min_val_loss_batch}")
trainer.load_model(step=min_val_loss_batch)
min_loss = np.min(np.array(val_losses)[~np.isnan(val_losses)])
elif args.interpret_by == "both":
# find the min val loss epoch
val_losses = []
for epoch in range(args.num_epochs):
val_loss = []
for rank in range(args.ngpus):
if os.path.exists(f"{args.log_dir}/result_dict.epoch.{epoch}.ddp_rank.{rank}.json"):
with open(f"{args.log_dir}/result_dict.epoch.{epoch}.ddp_rank.{rank}.json", "r") as f:
result_dict = json.load(f)
val_loss.append(result_dict["val_loss"])
else:
val_loss.append(np.nan)
val_losses.append(np.mean(val_loss))
min_val_loss_epoch = np.argmin(val_losses) + 1
min_epoch_loss = np.min(val_losses)
# find the min val loss batch
val_losses = []
train_data_size = subprocess.check_output(f'wc -l {args.data_file_train}', shell=True)
train_data_size = int(str(train_data_size).split(' ')[0][2:]) - 1
num_saved_batches = int(np.floor(np.ceil(np.ceil(train_data_size * args.train_size)
/ args.ngpus / args.batch_size)
* args.num_epochs / args.num_save_batches) + 1)
print(f'num_saved_batches: {num_saved_batches}')
steps = list(range(args.num_save_batches,
num_saved_batches * args.num_save_batches,
args.num_save_batches))
for step in steps:
val_loss = []
for rank in range(args.ngpus):
if (os.path.exists(f"{args.log_dir}/result_dict.batch.{step}.ddp_rank.{rank}.json")):
with open(f"{args.log_dir}/result_dict.batch.{step}.ddp_rank.{rank}.json", "r") as f:
result_dict = json.load(f)
val_loss.append(result_dict["val_loss"])
else:
val_loss.append(np.nan)
val_losses.append(np.mean(val_loss))
if len(np.array(val_losses)[~np.isnan(val_losses)]) > 0:
# remove nan values steps
steps = np.array(steps)[~np.isnan(val_losses)]
# remove nan values val_losses
val_losses = np.array(val_losses)[~np.isnan(val_losses)]
min_val_loss_batch = steps[np.argmin(val_losses)]
min_batch_loss = np.min(val_losses)
min_loss = min(min_epoch_loss, min_batch_loss)
else:
min_loss = min_epoch_loss
if len(np.array(val_losses)[~np.isnan(val_losses)]) == 0 or min_epoch_loss < min_batch_loss:
print(f"min_val_loss_epoch: {min_val_loss_epoch}, loss: {min_epoch_loss}")
if dryrun:
print("dryrun mode, skip interpret")
return
trainer.load_model(epoch=min_val_loss_epoch)
else:
print(f"min_val_loss_batch: {min_val_loss_batch}, loss: {min_batch_loss}")
if dryrun:
print("dryrun mode, skip interpret")
return
trainer.load_model(step=min_val_loss_batch)
if idxs is None:
idxs = list(range(len(dataset)))
out_index = dataset.data.index
else:
out_index = dataset.data.index[idxs]
# interpret one sequence at a time
x_embeds = []
x_jacobs = []
ys = []
y_covars = []
if args.use_ig:
ig = IntegratedGradients(ig_forward)
# set up jacobian function for torch input
# x is second last layer output, y is target
if args.use_jacob:
def jacobian_fn(x, tgt=None):
y = trainer.model.output_model.post_reduce(x)
if tgt is None:
tgt = torch.ones_like(y).to(trainer.device)
res = trainer.loss_fn(y, tgt, reduce=False, reduction="none")
return res
for idx in idxs:
batch = dataset.__getitem__(idx)
if args.dataset.startswith("FullGraph"):
# we need to expand the batch dim 1
for k in batch:
batch[k] = batch[k].unsqueeze(0)
y_covar, y, x_embed, attn_weight_layers = trainer.interpret_step(batch)
if args.loss_fn == "GP_loss":
y_covars.append(y_covar.detach().cpu().numpy())
elif args.loss_fn == "weighted_loss_betabinomial":
alpha = y[:, 0]
beta = y[:, 1]
y_mean = alpha / (alpha + beta)
y_covar = y_mean * (1 - y_mean) / (alpha + beta + 1)
y_covars.append(y_covar.detach().cpu().numpy())
y = y_mean
elif args.loss_fn == "gaussian_loss":
y_mean = y[:, 0]
y_covar = y[:, 1]
y_covars.append(y_covar.detach().cpu().numpy())
y = y_mean
if isinstance(batch, dict):
batch = sn(**batch)
if args.use_ig:
x = batch.x.requires_grad_(True)
x_gradients = []
for i in range(batch.y.shape[1]):
x_gradient = ig.attribute(
x, target=batch.y[:, [i]].int(),
additional_forward_args=(trainer, batch, i),
internal_batch_size=1,
)
x_gradients.append(x_gradient.detach().cpu().numpy())
else:
x_gradients = None
if args.use_jacob:
x_jacob = torch.autograd.functional.jacobian(
jacobian_fn,
(x_embed.to(trainer.device, non_blocking=True))
)
if hasattr(batch, "score_mask"):
x_jacobs.append(x_jacob[0, np.nonzero(batch.score_mask.numpy())[1][0], :, 0, 0].detach().cpu().numpy())
else:
x_jacobs.append(x_jacob[0, 0].detach().cpu().numpy())
# select the corresponding alt output for the data point
if "Onesite" in args.dataset:
# reshape y to (batch_size, -1)
y = y.reshape(y.shape[0], -1)
while len(x_embed.shape) > 2:
x_embed = x_embed.squeeze(0)
while (len(y.shape) > 2):
y = y.squeeze(-1)
# if args.dataset.startswith("FullGraph") and not args.model.startswith("lora"):
# x_embed = x_embed[0]
x_embeds.append(x_embed.detach().cpu().numpy())
ys.append(y.detach().cpu().numpy())
# print(f"loss for data point idx {idx}: {loss}")
# print(f"logits for data point idx {idx}: {y}")
# print(f"save attention weights for data point idx {idx}")
if args.save_attn:
if args.out_dir is None:
save_file_name = f"{args.log_dir}/attn_weights.{idx}.pkl"
else:
if not args.out_dir.endswith(".csv"):
save_file_name = f"{args.out_dir}/attn_weights.{idx}.pkl"
else:
save_file_name = f"{args.out_dir.replace('.csv', '')}.{idx}.pkl"
with open(save_file_name, "wb") as f:
pickle.dump(([a.detach().cpu().numpy() for a in attn_weight_layers],
batch.edge_index_star.detach().cpu().numpy(),
dataset.data.iloc[idx],
(dataset.mutations[idx].seq_start_orig, dataset.mutations[idx].seq_end_orig,
dataset.mutations[idx].seq_start, dataset.mutations[idx].seq_end),
y.detach().cpu().numpy(),
x_gradients), f)
x_embeds = np.concatenate(x_embeds, axis=0)
x_embeds = pd.DataFrame(x_embeds, index=out_index)
x_embeds.columns = [f'X.{i}' for i in range(x_embeds.shape[1])]
# assign column names
if args.use_jacob:
x_jacobs = np.concatenate(x_jacobs, axis=0)
x_jacobs_df = pd.DataFrame(x_jacobs, index=out_index)
x_jacobs_df.columns = [f'jacob.{i}' for i in range(x_jacobs_df.shape[1])]
ys = pd.DataFrame(np.concatenate(ys, axis=0), index=out_index)
if args.loss_fn == "GP_loss" or args.loss_fn == "weighted_loss_betabinomial" or args.loss_fn == "gaussian_loss":
y_covars = pd.DataFrame(np.concatenate(y_covars, axis=0), index=out_index)
if y_covars.shape[1] == 1:
y_covars.columns = ["logits_var"]
else:
y_covars.columns=[f'logits_var.{i}' for i in range(y_covars.shape[1])]
if ys.shape[1] == 1:
ys.columns = ["logits"]
else:
ys.columns=[f'logits.{i}' for i in range(ys.shape[1])]
x_embed_df = pd.concat([dataset.data.loc[out_index], ys, x_embeds], axis=1)
if args.loss_fn == "GP_loss" or args.loss_fn == "weighted_loss_betabinomial" or args.loss_fn == "gaussian_loss":
x_embed_df = pd.concat([x_embed_df, y_covars], axis=1)
if args.use_jacob:
x_embed_df = pd.concat([x_embed_df, x_jacobs_df], axis=1)
# clean up the data sets
trainer.dataset.clean_up()
# add min_loss to the x_embed_df
x_embed_df["min_loss"] = min_loss
if four_fold:
return x_embed_df, ys, min_loss
else:
return x_embed_df
def test_scalar_invariance(args):
import torch
hparams = vars(args)
torch.manual_seed(1234)
rotate = torch.tensor(
[
[0.9886788, -0.1102370, 0.1017945],
[0.1363630, 0.9431761, -0.3030248],
[-0.0626055, 0.3134752, 0.9475304],
]
)
dataset_att = {"data_type": args.data_type,
"radius": args.radius,
"max_neighbors": args.max_num_neighbors,
"loop": args.loop,
"shuffle": False,
"node_embedding_type": args.node_embedding_type,
"graph_type": args.graph_type,
"add_plddt": args.add_plddt,
"scale_plddt": args.scale_plddt,
"add_conservation": args.add_conservation,
"add_position": args.add_position,
"add_sidechain": args.add_sidechain,
"add_dssp": args.add_dssp,
"add_msa": args.add_msa,
"add_confidence": args.add_confidence,
"add_msa_contacts": args.add_msa_contacts,
"add_ptm": args.add_ptm,
"loaded_msa": args.loaded_msa,
"loaded_esm": args.loaded_esm,
"loaded_confidence": args.loaded_confidence,
"data_augment": args.data_augment,
"score_transfer": args.score_transfer,
"alt_type": args.alt_type,
"computed_graph": args.computed_graph,
"neighbor_type": args.neighbor_type,
"max_len": args.max_len,}
datasets = getattr(data, args.dataset)(
data_file=f"{args.data_file_train}",
gpu_id=0,
**dataset_att,
)
dataloader = torch.utils.data.DataLoader(
datasets,
batch_size=2,
shuffle=False,
num_workers=0,
)
data_point = next(iter(dataloader))
data_point["edge_index"] = None
data_point["edge_index_star"] = None
data_point["edge_attr_star"] = None
data_point["batch"] = None
hparams["drop_out"] = 0
model = create_model(hparams, model_class=args.model_class)
# get data points
pos = torch.randn(data_point["x"].shape[0], data_point["x"].shape[1], 3)
node_vec_attr = torch.randn(data_point["x"].shape[0], data_point["x"].shape[1], 3, 35)
y = model(data_point["x"], data_point["x_mask"], data_point["x_alt"], pos,
data_point["edge_index"], data_point["edge_index_star"],
data_point["edge_attr"], data_point["edge_attr_star"],
node_vec_attr, data_point["batch"], data_point, return_attn=True)[0]
y_rot = model(data_point["x"], data_point["x_mask"], data_point["x_alt"], pos @ rotate,
data_point["edge_index"], data_point["edge_index_star"],
data_point["edge_attr"], data_point["edge_attr_star"],
(node_vec_attr.permute(0, 1, 3, 2) @ rotate).permute(0, 1, 3, 2), data_point["batch"], data_point,
return_attn=True)[0]
torch.testing.assert_allclose(y, y_rot)
def test_scalar_invariance_2(args):
import torch
from torch_geometric.loader import DataLoader
hparams = vars(args)
torch.manual_seed(1234)
rotate = torch.tensor(
[
[0.9886788, -0.1102370, 0.1017945],
[0.1363630, 0.9431761, -0.3030248],
[-0.0626055, 0.3134752, 0.9475304],
]
)
dataset_att = {"data_type": args.data_type,
"radius": args.radius,
"max_neighbors": args.max_num_neighbors,
"loop": args.loop,
"shuffle": False,
"node_embedding_type": args.node_embedding_type,
"graph_type": args.graph_type,
"add_plddt": args.add_plddt,
"scale_plddt": args.scale_plddt,
"add_conservation": args.add_conservation,
"add_position": args.add_position,
"add_sidechain": args.add_sidechain,
"add_dssp": args.add_dssp,
"add_msa": args.add_msa,
"add_confidence": args.add_confidence,
"add_msa_contacts": args.add_msa_contacts,
"add_ptm": args.add_ptm,
"loaded_msa": args.loaded_msa,
"loaded_esm": args.loaded_esm,
"loaded_confidence": args.loaded_confidence,
"data_augment": args.data_augment,
"score_transfer": args.score_transfer,
"alt_type": args.alt_type,
"computed_graph": args.computed_graph,
"neighbor_type": args.neighbor_type,
"max_len": args.max_len,}
datasets = getattr(data, args.dataset)(
data_file=f"{args.data_file_train}",
gpu_id=0,
**dataset_att,
)
dataloader = DataLoader(
datasets,
batch_size=2,
shuffle=False,
num_workers=0,
)
data_point = next(iter(dataloader))
model = create_model(hparams, model_class=args.model_class)
# get data points
pos = torch.randn(data_point.x.shape[0], 3)
node_vec_attr = torch.randn(data_point.x.shape[0], 3, 35)
y = model(data_point.x, data_point.x_mask, data_point.x_alt, pos,
data_point.edge_index, data_point.edge_index_star,
data_point.edge_attr, data_point.edge_attr_star,
node_vec_attr, data_point.batch, )[0]
y_rot = model(data_point.x, data_point.x_mask, data_point.x_alt, pos @ rotate,
data_point.edge_index, data_point.edge_index_star,
data_point.edge_attr, data_point.edge_attr_star,
(node_vec_attr.permute(0, 2, 1) @ rotate).permute(0, 2, 1), data_point.batch)[0]
torch.testing.assert_allclose(y, y_rot)
if __name__ == "__main__":
# main_pl()
_args = get_args()
if _args.mode == "train":
main(_args)
elif _args.mode == "train_4_fold":
main(_args, continue_train=False, four_fold=True)
elif _args.mode == "adaptive_train":
adaptive_main(_args)
elif _args.mode == "continue_train":
main(_args, continue_train=True)
elif _args.mode == "test":
_test(_args)
elif _args.mode == "train_and_test":
main(_args)
_args.re_test = True
_test(_args)
elif _args.mode == "interpret":
if _args.interpret_idxes is not None:
_args.interpret_idxes = [int(i) for i in _args.interpret_idxes.split(",")]
interpret(_args, idxs=_args.interpret_idxes, step=_args.interpret_step, epoch=_args.interpret_epoch)
elif _args.mode == "interpret_dry":
if _args.interpret_idxes is not None:
_args.interpret_idxes = [int(i) for i in _args.interpret_idxes.split(",")]
interpret(_args, idxs=_args.interpret_idxes, step=_args.interpret_step, epoch=_args.interpret_epoch, dryrun=True)
elif _args.mode == "interpret_4_fold":
if _args.interpret_idxes is not None:
_args.interpret_idxes = [int(i) for i in _args.interpret_idxes.split(",")]
interpret(_args, idxs=_args.interpret_idxes, step=_args.interpret_step, epoch=_args.interpret_epoch, dryrun=False, four_fold=True)
elif _args.mode == "test_equivariancy":
test_scalar_invariance(_args)
elif _args.mode == "test_equivariancy_2":
test_scalar_invariance_2(_args)
elif _args.mode == "hp_tune":
hp_tune(_args)
else:
raise ValueError(f"mode {_args.mode} not supported")
|