File size: 67,392 Bytes
7718235
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
import argparse
import json
import os
import subprocess
import pickle

import numpy as np
import pandas as pd
import random
import torch
import torch.multiprocessing as mp
from types import SimpleNamespace as sn
import data
from model import model
from model.model import create_model, create_model_and_load
from model.trainer import data_distributed_parallel_gpu, PreMode_trainer, single_thread_gpu, ray_tune, single_thread_gpu_4_fold
from utils.configs import save_argparse, LoadFromFile
from captum.attr import IntegratedGradients
from functools import partial


def get_args():
    parser = argparse.ArgumentParser(description='Training')
    # keep first
    parser.add_argument('--conf', '-c', type=open, action=LoadFromFile, help='Configuration yaml file')
    # data set specific
    parser.add_argument('--dataset', default=None, type=str, choices=data.__all__,
                        help='Name of the dataset')
    parser.add_argument('--data-file-train', default=None, type=str,
                        help='Custom training files')
    parser.add_argument('--data-file-train-ddp-prefix', default=None, type=str,
                        help='Prefix of custom training files if use DDP')
    parser.add_argument('--data-file-test', default=None, type=str,
                        help='Custom testing files')
    parser.add_argument('--data-type', default=None, type=str,
                        help='Data type for the task')
    parser.add_argument('--convert-to-onesite', type=bool, default=False,
                        help='Convert the data to one site-date or not, only works for FullGraph dataset')
    parser.add_argument('--loop', type=bool, default=False,
                        help='Add self loop to nodes or not')
    parser.add_argument('--max-num-neighbors', type=int, default=32,
                        help='Maximum number of neighbors to consider in the network')
    parser.add_argument('--node-embedding-type', type=str, default='esm',
                        help='Node embedding type. Choose from esm, one-hot, one-hot-idx, or aa-5dim')
    parser.add_argument('--graph-type', type=str, default='af2',
                        help='Graph type. Choose from af2 or 1d-neighbor')
    parser.add_argument('--add-plddt', type=bool, default=False,
                        help='Whether to add plddt or not')
    parser.add_argument('--scale-plddt', type=bool, default=False,
                        help='Whether to scale plddt or not')
    parser.add_argument('--add-conservation', type=bool, default=False,
                        help='Whether to add conservation or not')
    parser.add_argument('--add-dssp', type=bool, default=False,
                        help='Whether to add dssp or not')
    parser.add_argument('--add-position', type=bool, default=False,
                        help='Whether to add positional wise encoding or not')
    parser.add_argument('--add-sidechain', type=bool, default=False,
                        help='Whether to add sidechain or not')
    parser.add_argument('--use-cb', type=bool, default=False,
                        help='Whether to use CB as distance or not')
    parser.add_argument('--add-msa', type=bool, default=False,
                        help='Whether to add msa to features or not')
    parser.add_argument('--add-msa-contacts', type=bool, default=True,
                        help='Whether to add msa contacts to features or not')
    parser.add_argument('--add-confidence', type=bool, default=False,
                        help='Whether to add af2 predicted confidence or not')
    parser.add_argument('--add-ptm', type=bool, default=False,
                        help='Whether to add post translational modification information or not')
    parser.add_argument('--add-af2-single', type=bool, default=False,
                        help='Whether to add alphafold single representation or not')
    parser.add_argument('--add-af2-pairwise', type=bool, default=False,
                        help='Whether to add alphafold pairwise representation or not')
    parser.add_argument('--loaded-af2-single', type=bool, default=False,
                        help='Whether to load af2 single representation or not')
    parser.add_argument('--loaded-af2-pairwise', type=bool, default=False,
                        help='Whether to load af2 pairwise representation or not')
    parser.add_argument('--loaded-confidence', type=bool, default=False,
                        help='Whether to load af2 predicted confidence or not')
    parser.add_argument('--loaded-msa', type=bool, default=False,
                        help='Whether to preload msa to features or not')
    parser.add_argument('--loaded-esm', type=bool, default=False,
                        help='Whether to preload esm to features or not')
    parser.add_argument('--alt-type', type=str, default='alt',
                        help='alt type in data, either alt or concat')
    parser.add_argument('--computed-graph', type=bool, default=True,
                        help='Whether to use computed graph or not')
    parser.add_argument('--neighbor-type', type=str, default='KNN',
                        help='The type of neighbor selection. Choose from KNN or radius')
    parser.add_argument('--max-len', type=int, default=2251,
                        help='Maximum length of input sequences')
    parser.add_argument('--radius', type=float, default=50,
                        help='Radius of AA to be selected')
    parser.add_argument('--data-augment', type=bool, default=False,
                        help='Whether to augument data, if so, the data will be augumented in the training process by reverse the ref and alt')
    parser.add_argument('--score-transfer', type=bool, default=False,
                        help='Whether to transfer scer, if so, the score will be transfered to 0, 3')
    parser.add_argument('--use-lmdb', type=bool, default=False,
                        help='Whether to use preloaded lmdb')
    
    # model specific
    parser.add_argument('--load-model', type=str, default=None,
                        help='Restart training using a model checkpoint')
    parser.add_argument('--partial-load-model', type=bool, default=False,
                        help='Partial load model, particullay from maskpredict model using a model checkpoint')
    parser.add_argument('--use-output-head', type=bool, default=False,
                        help='Use output head or not')
    parser.add_argument('--model-class', type=str, default=None, choices=model.__all__,
                        help='Which model to use')
    parser.add_argument('--model', type=str, default=None,
                        help='Which representation model to use')
    parser.add_argument('--triangular-update', type=bool, default=True,
                        help='Whether do triangular update')
    parser.add_argument('--alt-projector', type=int, default=None,
                        help='Alt projector size')
    parser.add_argument('--neighbor-embedding', type=bool, default=False,
                        help='If a neighbor embedding should be applied before interactions')
    parser.add_argument('--cutoff-lower', type=float, default=0.0,
                        help='Lower cutoff in model')
    parser.add_argument('--cutoff-upper', type=float, default=5.0,
                        help='Upper cutoff in model')
    parser.add_argument('--x-in-channels', type=int, default=None,
                        help='x input size, only used if different from x_channels')
    parser.add_argument('--x-in-embedding-type', type=str, default=None,
                        help='x input embedding type, only used if x-in-channels is not None')
    parser.add_argument('--x-channels', type=int, default=1280,
                        help='x embedding size')
    parser.add_argument('--x-hidden-channels', type=int, default=640,
                        help='x hidden size')
    parser.add_argument('--vec-in-channels', type=int, default=4,
                        help='vector embedding size')
    parser.add_argument('--vec-channels', type=int, default=64,
                        help='vector hidden size')
    parser.add_argument('--vec-hidden-channels', type=int, default=1280,
                        help='vector hidden size, must be equal to x_channels')
    parser.add_argument('--share-kv', type=bool, default=False,
                        help='Whether to share key and value')
    parser.add_argument('--ee-channels', type=int, default=None,
                        help='edge-edge update channel that depends on start/end node distances')
    parser.add_argument('--distance-influence', type=str, default='both',
                        help='Which distance influences to use')
    parser.add_argument('--num-heads', type=int, default=16,
                        help='number of attention heads')
    parser.add_argument('--num-layers', type=int, default=2,
                        help='number of layers')
    parser.add_argument('--num-edge-attr', type=int, default=1,
                        help='number of edge attributes')
    parser.add_argument('--num-nodes', type=int, default=1,
                        help='number of nodes')
    parser.add_argument('--num-rbf', type=int, default=32,
                        help='number of radial basis functions')
    parser.add_argument('--rbf-type', type=str, default="expnorm",
                        help='type of radial basis functions')
    parser.add_argument('--trainable-rbf', type=bool, default=False,
                        help='to train rbf or not')
    parser.add_argument('--num-workers', type=int, default=10,
                        help='number of workers')
    parser.add_argument('--output-model', type=str, default='EquivariantBinaryClassificationSAGPoolScalar',
                        help='The type of output model')
    parser.add_argument('--reduce-op', type=str, default='mean',
                        help='The type of reduce operation')
    parser.add_argument('--output-dim', type=int, default=1,
                        help='The dimension of output model')
    parser.add_argument('--output-dim-1', type=int, default=1,
                        help='The first dimension of output model, only used in regression-classification')
    parser.add_argument('--output-dim-2', type=int, default=1,
                        help='The second dimension of output model, only used in regression-classification')
    parser.add_argument('--activation', type=str, default='silu',
                        help='The activation function')
    parser.add_argument('--attn-activation', type=str, default='silu',
                        help='The attention activation function')
    parser.add_argument('--drop-out', type=float, default=0.1,
                        help='Drop out rate at each layer') 
    parser.add_argument('--use-lora', type=int, default=None,
                        help='Whether to use lora or not')
   
    # training specific
    parser.add_argument('--trainer-fn', type=str, default='PreMode_trainer', 
                        help='trainer function')
    parser.add_argument('--freeze-representation', type=bool, default=False, 
                        help='freeze representation module or not')
    parser.add_argument('--freeze-representation-but-attention', type=bool, default=False, 
                        help='freeze representation module but without attention, or not')
    parser.add_argument('--freeze-representation-but-gru', type=bool, default=False, 
                        help='freeze representation module but without gru, or not')
    parser.add_argument('--seed', type=int, default=0, 
                        help='random seed')
    parser.add_argument('--seed-with-pl', type=bool, default=False, 
                        help='Initialize with pytorch lightning seed')
    parser.add_argument('--lr', type=float, default=1e-5, 
                        help='learning rate')
    parser.add_argument('--lr-factor', type=float, default=0.8, 
                        help='factor by which the learning rate will be reduced')
    parser.add_argument('--weight-decay', type=float, default=0.0, 
                        help='factor by which the learning rate will be decayed in AdamW, default 0.0')
    parser.add_argument('--lr-min', type=float, default=1e-6, 
                        help='minimum learning rate')
    parser.add_argument('--lr-patience', type=int, default=2, 
                        help='number of epochs with no improvement after which learning rate will be reduced')
    parser.add_argument('--num-steps-update', type=int, default=1, 
                        help='number of steps after which to update the model')
    parser.add_argument('--lr-warmup-steps', type=int, default=2000, 
                        help='number of warmup steps for learning rate')
    parser.add_argument('--batch-size', type=int, default=6, 
                        help='batch size for training')
    parser.add_argument('--ngpus', type=int, default=4, 
                        help='number of gpus to use')
    parser.add_argument('--gpu-id', type=int, default=0, 
                        help='default of gpu to use in processing the dataset')
    parser.add_argument('--num-epochs', type=int, default=10, 
                        help='number of epochs to train for')
    parser.add_argument('--loss-fn', type=str, default='binary_cross_entropy', 
                        help='loss function to use')
    parser.add_argument('--y-weight', type=float, default=1.0, 
                        help='weight of y in loss function')
    parser.add_argument('--data-split-fn', type=str, default='_by_good_batch', 
                        help='function for splitting data')
    parser.add_argument('--contrastive-loss-fn', type=str, default='cosin_contrastive_loss', 
                        help='contrastive loss function to use')
    parser.add_argument('--reset-train-dataloader-each-epoch', type=bool, default=True, 
                        help='whether to reset train dataloader each epoch')
    parser.add_argument('--reset-train-dataloader-each-epoch-seed', type=bool, default=False,
                        help='whether to set the seed of shuffle train dataloader each epoch')
    parser.add_argument('--test-size', type=int, default=None, 
                        help='size of the test set')
    parser.add_argument('--train-size', type=float, default=0.95, 
                        help='fraction of data to use for training')
    parser.add_argument('--val-size', type=float, default=0.05, 
                        help='fraction of data to use for validation')
    parser.add_argument('--hp-tune', type=bool, default=False, 
                        help='Whether use hyperparameter tuning or not')
    parser.add_argument('--adaptive-rounds', type=int, default=6, 
                        help='active learning rounds')
    parser.add_argument('--init-fn', type=str, default=None, 
                        help='Initialization function for output model')
    
    # log specific
    parser.add_argument('--num-save-epochs', type=int, default=1, 
                        help='number of epochs after which to save the model')
    parser.add_argument('--num-save-batches', type=int, default=1000, 
                        help='number of batches after which to save the model')
    parser.add_argument('--log-dir', type=str, default='/share/vault/Users/gz2294/RESCVE/CHPs.v1.ct/', 
                        help='directory for saving logs')
    
    # script specific
    parser.add_argument('--mode', type=str, default="train_and_test", 
                        help='mode of training')
    parser.add_argument('--re-test', type=bool, default=False, 
                        help='re-test the model or not')
    parser.add_argument('--test-by', type=str, default='epoch_and_batch', 
                        help='test by batch or epoch')
    parser.add_argument('--interpret-by', type=str, default=None, 
                        help='interpret by batch or epoch')
    parser.add_argument('--interpret-step', type=int, default=None, 
                        help='interpret step')
    parser.add_argument('--interpret-epoch', type=int, default=None, 
                        help='interpret epoch')
    parser.add_argument('--out-dir', type=str, default=None, 
                        help='The output directory / file for interpret mode')
    parser.add_argument('--interpret-idxes', type=str, default=None, 
                        help='The index of the data point to interpret, split by comma')
    parser.add_argument('--save-attn', type=bool, default=False, 
                        help='Whether save attention matrix for interpret mode')
    parser.add_argument('--use-ig', type=bool, default=False, 
                        help='Whether to use integrated gradient for interpret mode')
    parser.add_argument('--use-jacob', type=bool, default=False, 
                        help='Whether to use jacobian at the output reduce layer for interpret mode')
    # aggregate
    args = parser.parse_args()
    os.makedirs(args.log_dir, exist_ok=True)
    if "train" in args.mode:
        save_argparse(args, os.path.join(args.log_dir, "input.yaml"), exclude=["conf"])

    return args


def main(args, continue_train=False, four_fold=False):
    if args.seed_with_pl:
        import pytorch_lightning as pl
        pl.seed_everything(args.seed)
    else:
        random.seed(args.seed)
        np.random.seed(args.seed)
        torch.manual_seed(args.seed)
        torch.cuda.manual_seed_all(args.seed)

    hparams = vars(args)
    model_class = args.model_class
    # initialize model
    if args.load_model == "None" or args.load_model == "null" or args.load_model is None:
        my_model = create_model(hparams, model_class=model_class)
    else:
        my_model = create_model_and_load(hparams, model_class=model_class)

    # TODO: consider implement early stopping
    # early_stopping = EarlyStopping("val_loss", patience=args.early_stopping_patience)
    dataset_att = {"data_type": args.data_type,
                   "radius": args.radius,
                   "max_neighbors": args.max_num_neighbors,
                   "loop": args.loop,
                   "shuffle": False, 
                   "node_embedding_type": args.node_embedding_type,
                   "graph_type": args.graph_type,
                   "add_plddt": args.add_plddt,
                   "scale_plddt": args.scale_plddt,
                   "add_conservation": args.add_conservation,
                   "add_position": args.add_position,
                   "add_sidechain": args.add_sidechain,
                   "add_dssp": args.add_dssp,
                   "add_msa": args.add_msa,
                   "add_confidence": args.add_confidence,
                   "add_msa_contacts": args.add_msa_contacts,
                   "add_ptm": args.add_ptm,
                   "add_af2_single": args.add_af2_single,
                   "add_af2_pairwise": args.add_af2_pairwise,
                   "loaded_af2_single": args.loaded_af2_single,
                   "loaded_af2_pairwise": args.loaded_af2_pairwise,
                   "loaded_msa": args.loaded_msa,
                   "loaded_esm": args.loaded_esm,
                   "loaded_confidence": args.loaded_confidence,
                   "data_augment": args.data_augment,
                   "score_transfer": args.score_transfer,
                   "alt_type": args.alt_type,
                   "computed_graph": args.computed_graph,
                   "neighbor_type": args.neighbor_type,
                   "max_len": args.max_len,
                   "use_lmdb": args.use_lmdb,}
    if "Onesite" in args.dataset:
        dataset_att['convert_to_onesite'] = args.convert_to_onesite
    if args.trainer_fn == "PreMode_trainer":
        trainer_fn = PreMode_trainer
        dataset_extra_args = {}
    else:
        raise ValueError(f"trainer_fn {args.trainer_fn} not supported")
    if continue_train:
        for i in range(args.num_epochs):
            if os.path.exists(os.path.join(args.log_dir, f"result_dict.epoch.{i}.ddp_rank.0.json")) and os.path.exists(os.path.join(args.log_dir, f"model.epoch.{i+1}.pt")):
                continue
            else:
                break
        if i == args.num_epochs - 1:
            print(f"model for epoch {args.num_epochs} already exists")
            return
        if i == 0:
            check_point_epoch = None
        else:
            check_point_epoch = i
        print(f"continue training from epoch {check_point_epoch}")
    else:
        check_point_epoch = None
    if args.ngpus > 1:
        assert four_fold is False, "fold 4 is not supported in distributed training"
        mp.spawn(data_distributed_parallel_gpu,
                    args=(my_model, args, dataset_att, dataset_extra_args, trainer_fn, check_point_epoch),
                    nprocs=args.ngpus,
                    join=True)
    else:
        dataset = getattr(data, args.dataset)(
            data_file=args.data_file_train,
            **dataset_att,
            **dataset_extra_args,
        )
        if four_fold:
            single_thread_gpu_4_fold(args.gpu_id, my_model, args, dataset, trainer_fn, check_point_epoch)
        else:
            single_thread_gpu(args.gpu_id, my_model, args, dataset, trainer_fn, check_point_epoch)


def adaptive_main(args):
    if args.seed_with_pl:        
        import pytorch_lightning as pl
        pl.seed_everything(args.seed)
    else:
        random.seed(args.seed)
        np.random.seed(args.seed)
        torch.manual_seed(args.seed)
        torch.cuda.manual_seed_all(args.seed)

    hparams = vars(args)
    model_class = args.model_class
    # initialize model
    if args.load_model == "None" or args.load_model == "null" or args.load_model is None:
        my_model = create_model(hparams, model_class=model_class)
    else:
        my_model = create_model_and_load(hparams, model_class=model_class)
    dataset_att = {"data_type": args.data_type,
                   "radius": args.radius,
                   "max_neighbors": args.max_num_neighbors,
                   "loop": args.loop,
                   "shuffle": False, 
                   "node_embedding_type": args.node_embedding_type,
                   "graph_type": args.graph_type,
                   "add_plddt": args.add_plddt,
                   "scale_plddt": args.scale_plddt,
                   "add_conservation": args.add_conservation,
                   "add_position": args.add_position,
                   "add_sidechain": args.add_sidechain,
                   "add_dssp": args.add_dssp,
                   "add_msa": args.add_msa,
                   "add_confidence": args.add_confidence,
                   "add_msa_contacts": args.add_msa_contacts,
                   "add_ptm": args.add_ptm,
                   "add_af2_single": args.add_af2_single,
                   "add_af2_pairwise": args.add_af2_pairwise,
                   "loaded_af2_single": args.loaded_af2_single,
                   "loaded_af2_pairwise": args.loaded_af2_pairwise,
                   "loaded_msa": args.loaded_msa,
                   "loaded_esm": args.loaded_esm,
                   "loaded_confidence": args.loaded_confidence,
                   "data_augment": args.data_augment,
                   "score_transfer": args.score_transfer,
                   "alt_type": args.alt_type,
                   "computed_graph": args.computed_graph,
                   "neighbor_type": args.neighbor_type,
                   "max_len": args.max_len,}
    if "Onesite" in args.dataset:
        dataset_att['convert_to_onesite'] = args.convert_to_onesite
    if args.trainer_fn == "PreMode_trainer":
        trainer_fn = PreMode_trainer
        dataset_extra_args = {}
    else:
        raise ValueError(f"trainer_fn {args.trainer_fn} not supported")
    # read in the data_file
    try:
        data_file = pd.read_csv(args.data_file_train, index_col=0, low_memory=False)
        data_file_test = pd.read_csv(args.data_file_test, index_col=0, low_memory=False)
    except UnicodeDecodeError:
        data_file = pd.read_csv(args.data_file_train, index_col=0, encoding='ISO-8859-1')
        data_file_test = pd.read_csv(args.data_file_test, index_col=0, encoding='ISO-8859-1')
    # if split fn is by_anno, start from beginning
    if args.data_split_fn == "_by_anno":
        # pick the data file 'split' column with 'train' or 'val' value
        data_file_train = data_file[data_file['split'].isin(['train', 'val'])]
        size_each_round = data_file_train['split'].value_counts()['train']
        data_file_candidate_train = data_file[~data_file['split'].isin(['train', 'val'])]
    else:
        # randomly select 10% of the data as train set
        data_file_train = data_file.sample(frac=0.1, random_state=args.seed)
        size_each_round = data_file_train.shape[0]
        data_file_candidate_train = data_file.drop(data_file_train.index)
    # save the train and test data file
    # make sure the log_dir exists
    base_log_dir = args.log_dir
    os.makedirs(base_log_dir, exist_ok=True)
    
    if args.data_split_fn == "_by_anno":
        # val_size_each_round = sum(data_file_train['split'] == 'val')
        val_size_each_round = 0
    else:
        val_size_each_round = int(size_each_round * args.val_size)
    for i in range(args.adaptive_rounds):
        # we only do 6 rounds of adaptive learning, suppose the init amount is 10%
        # for each round, we train the model on the train set, and test on the test set
        # then we select the top 10% of the test set as the new train set
        # and the rest as the new test set
        # set the log_dir for each round
        if os.path.exists(os.path.join(base_log_dir, f"candidate.training.round.{i}.csv")):
            print(f"round {i} already exists, skip")
            x_embed_df = pd.read_csv(os.path.join(base_log_dir, f"candidate.training.round.{i}.csv"), index_col=0)
            # read the results from the previous round
            data_file_train = pd.read_csv(os.path.join(base_log_dir, f"data_file_train.round.{i}.csv"), index_col=0)
            data_file_candidate_train = pd.read_csv(os.path.join(base_log_dir, f"data_file_candidate.round.{i}.csv"), index_col=0)
        else:
            args.log_dir = os.path.join(base_log_dir, f"round_{i}")
            os.makedirs(args.log_dir, exist_ok=True)
            data_file_train.to_csv(os.path.join(base_log_dir, f"data_file_train.round.{i}.csv"))
            data_file_candidate_train.to_csv(os.path.join(base_log_dir, f"data_file_candidate.round.{i}.csv"))
            dataset = getattr(data, args.dataset)(
                data_file=data_file_train,
                **dataset_att,
                **dataset_extra_args,
            )
            # check if model check point exists
            for e in range(args.num_epochs):
                if os.path.exists(os.path.join(args.log_dir, f"result_dict.epoch.{e}.ddp_rank.0.json")) and os.path.exists(os.path.join(args.log_dir, f"model.epoch.{e+1}.pt")):
                    continue
                else:
                    break
            if e == args.num_epochs - 1:
                print(f"model for epoch {args.num_epochs} already exists")
            else:
                if e == 0:
                    check_point_epoch = None
                else:
                    check_point_epoch = e
                print(f"continue training from epoch {check_point_epoch}")
                single_thread_gpu(args.gpu_id, my_model, args, dataset, trainer_fn, check_point_epoch)
            # test the model on the test set first
            dataset = getattr(data, args.dataset)(
                data_file=data_file_test,
                **dataset_att,
                **dataset_extra_args,
            )
            # add interpret mode here, add some args
            args.interpret_by = "both"
            x_embed_df = interpret_core(args, dataset, idxs=None, epoch=None, step=None)
            x_embed_df.to_csv(os.path.join(base_log_dir, f"testing.round.{i}.csv"))
            # test the model on the candidate train set
            # test the model on the test set first
            dataset = getattr(data, args.dataset)(
                data_file=data_file_candidate_train,
                **dataset_att,
                **dataset_extra_args,
            )
            x_embed_df = interpret_core(args, dataset, idxs=None, epoch=None, step=None)
            x_embed_df.to_csv(os.path.join(base_log_dir, f"candidate.training.round.{i}.csv"))
        # for columns starts with logits_var, we first calculate the rank percentiles
        x_embed_df = x_embed_df.apply(lambda x: x.rank(pct=True) if isinstance(x.name, str) and x.name.startswith("logits_var") else x)
        # then we calculate the row-wise mean of the rank percentiles
        x_embed_df_rank = x_embed_df.loc[:, x_embed_df.columns.str.startswith("logits_var")].mean(axis=1)
        # then we select the top `size_each_round` of the test set as the new train set
        # and the rest as the new test set
        # if the data_split_fn is by_anno, we need to make sure the new train set "split" column is "train"
        to_pick_threshold = 1 - size_each_round / data_file_candidate_train.shape[0]
        if args.data_split_fn == "_by_anno":
            data_file_train_new = data_file_candidate_train[x_embed_df_rank > to_pick_threshold]
            data_file_train_new['split'] = 'train'
            # randomly select certain amount of data from the candidate train set as new validation set
            # data_file_train_new['split'][np.random.choice(data_file_train_new.index, val_size_each_round)] = 'val'
            data_file_candidate_train = data_file_candidate_train[x_embed_df_rank <= to_pick_threshold]
        else:
            data_file_train_new = data_file_candidate_train[x_embed_df_rank > to_pick_threshold]
            data_file_candidate_train = data_file_candidate_train[x_embed_df_rank <= to_pick_threshold]
        # we need to drop columns in data_file_train_new that are not in data_file_train
        data_file_train_new = data_file_train_new[data_file_train.columns]
        # then we concat the new train set to the old train set
        data_file_train = pd.concat([data_file_train, data_file_train_new], axis=0)


def hp_tune(args):
    # hyperparameter tuning, too expensive thus only do for some genes
    # import ray has to be here, otherwise will cause error for other functions
    import ray
    from ray import tune
    from ray.tune.analysis import ExperimentAnalysis
    from ray.tune.schedulers import ASHAScheduler
    random.seed(args.seed)
    np.random.seed(args.seed)
    torch.manual_seed(args.seed)
    torch.cuda.manual_seed_all(args.seed)
    # transfer args to dict
    hparams = vars(args)
    # early_stopping = EarlyStopping("val_loss", patience=args.early_stopping_patience)
    dataset_att = {"data_type": args.data_type,
                   "radius": args.radius,
                   "max_neighbors": args.max_num_neighbors,
                   "loop": args.loop,
                   "shuffle": False, 
                   "node_embedding_type": args.node_embedding_type,
                   "graph_type": args.graph_type,
                   "add_plddt": args.add_plddt,
                   "scale_plddt": args.scale_plddt,
                   "add_conservation": args.add_conservation,
                   "add_position": args.add_position,
                   "add_sidechain": args.add_sidechain,
                   "add_dssp": args.add_dssp,
                   "add_msa": args.add_msa,
                   "add_confidence": args.add_confidence,
                   "add_msa_contacts": args.add_msa_contacts,
                   "add_ptm": args.add_ptm,
                   "add_af2_single": args.add_af2_single,
                   "add_af2_pairwise": args.add_af2_pairwise,
                   "loaded_af2_single": args.loaded_af2_single,
                   "loaded_af2_pairwise": args.loaded_af2_pairwise,
                   "loaded_msa": args.loaded_msa,
                   "loaded_esm": args.loaded_esm,
                   "loaded_confidence": args.loaded_confidence,
                   "data_augment": args.data_augment,
                   "score_transfer": args.score_transfer,
                   "alt_type": args.alt_type,
                   "computed_graph": args.computed_graph,
                   "neighbor_type": args.neighbor_type,
                   "max_len": args.max_len,}
    dataset = getattr(data, args.dataset)(
            data_file=args.data_file_train,
            **dataset_att,
        )
    # transform args to dict, which is already done, named hparams
    # set up ray tune configs
    config = {
        "lr": tune.loguniform(1e-5, 1e-2),
        "lr_min": tune.loguniform(1e-8, 1e-5),
        "batch_size": tune.choice([2, 4, 8, 16]),
        "drop_out": tune.uniform(0.0, 0.9),
        "num_save_batches": tune.choice([50, 100, 200, 400]),
    }
    # add the rest of hparams to config
    for k, v in hparams.items():
        if k not in config:
            config[k] = v
    # add a param in config to indicate the trainer fn whether to use tune or not
    config["hp_tune"] = True
    scheduler = ASHAScheduler(
        metric="loss",
        mode="min",
        max_t=args.num_epochs,
        grace_period=3,
        reduction_factor=2,
    )
    ray.init(num_cpus=20, num_gpus=torch.cuda.device_count())
    result: ExperimentAnalysis = tune.run(
        partial(ray_tune, dataset=dataset), 
        resources_per_trial={"cpu": 4, "gpu": 1},
        config=config,
        num_samples=25,
        scheduler=scheduler,
        verbose=1,
        local_dir=args.log_dir,
        checkpoint_at_end=True,
    )
    best_trial = result.get_best_trial("loss", "min", "all")
    best_trial_id = best_trial.trial_id
    print(f"Best trial config: {best_trial.config}")
    print(f"Best trial id: {best_trial_id}")
    # create symbolic link from the best trial to the log dir
    print(f"Best trial final validation loss: {best_trial.last_result['loss']}")
    # initialize model
    if args.load_model == "None" or args.load_model == "null" or args.load_model is None:
        my_model = create_model(best_trial.config, model_class=args.model_class)
    else:
        my_model = create_model_and_load(best_trial.config, model_class=args.model_class)
    if args.dataset.startswith("FullGraph"):
        my_model = torch.compile(my_model.to(f"cuda:{args.gpu_id}"))
    else:
        my_model = my_model.to(f"cuda:{args.gpu_id}")
    best_checkpoint = best_trial.checkpoint.to_air_checkpoint()
    best_checkpoint_data = best_checkpoint.to_dict()
    my_model.load_state_dict(best_checkpoint_data["net_state_dict"])
    torch.save(my_model.state_dict(), f'{args.log_dir}/model.hp_tune.pt')


def _test(args):
    if args.seed_with_pl:
        import pytorch_lightning as pl
        pl.seed_everything(args.seed)
    else:
        random.seed(args.seed)
        np.random.seed(args.seed)
        torch.manual_seed(args.seed)
        torch.cuda.manual_seed_all(args.seed)

    hparams = vars(args)
    model_class = args.model_class
    # initialize model
    my_model = create_model(hparams, model_class=model_class)

    dataset_att = {"data_type": args.data_type,
                   "radius": args.radius,
                   "max_neighbors": args.max_num_neighbors,
                   "loop": args.loop,
                   "shuffle": False, 
                   "node_embedding_type": args.node_embedding_type,
                   "graph_type": args.graph_type,
                   "add_plddt": args.add_plddt,
                   "scale_plddt": args.scale_plddt,
                   "add_conservation": args.add_conservation,
                   "add_position": args.add_position,
                   "add_sidechain": args.add_sidechain,
                   "add_dssp": args.add_dssp,
                   "add_msa": args.add_msa,
                   "add_confidence": args.add_confidence,
                   "add_msa_contacts": args.add_msa_contacts,
                   "add_ptm": args.add_ptm,
                   "add_af2_single": args.add_af2_single,
                   "add_af2_pairwise": args.add_af2_pairwise,
                   "loaded_af2_single": args.loaded_af2_single,
                   "loaded_af2_pairwise": args.loaded_af2_pairwise,
                   "loaded_msa": args.loaded_msa,
                   "loaded_esm": args.loaded_esm,
                   "loaded_confidence": args.loaded_confidence,
                   "data_augment": args.data_augment,
                   "score_transfer": args.score_transfer,
                   "alt_type": args.alt_type,
                   "computed_graph": args.computed_graph,
                   "neighbor_type": args.neighbor_type,
                   "max_len": args.max_len,}
    if args.trainer_fn == "PreMode_trainer":
        trainer_fn = PreMode_trainer
        dataset_extra_args = {}
    else:
        raise ValueError(f"trainer_fn {args.trainer_fn} not supported")
    dataset = getattr(data, args.dataset)(
        data_file=args.data_file_test,
        **dataset_att,
        **dataset_extra_args,
    )
    my_model = my_model.to(f"cuda:{args.gpu_id}")
    my_model.eval()
    trainer = trainer_fn(hparams=args, model=my_model, stage="test",
                         dataset=dataset, device_id=args.gpu_id)
    if "epoch" in args.test_by:
        # test by epoch
        print(f'num_saved_epochs: {args.num_epochs}')
        for epoch in range(1, args.num_epochs + 1):
            if os.path.exists(os.path.join(args.log_dir, f"test_result.epoch.{epoch}.txt")) and not args.re_test:
                print(f"test result for epoch {epoch} already exists")
                continue
            if os.path.exists(os.path.join(args.log_dir, f"result_dict.epoch.{epoch-1}.ddp_rank.0.json")):
                print(f"begin test for epoch {epoch}")
                trainer.load_model(epoch=epoch)
                test_result_dict, test_result_df = _test_one_epoch(trainer)
                with open(os.path.join(args.log_dir, f"test_result.epoch.{epoch}.txt"), "w") as f:
                    f.write(str(test_result_dict))
                test_result_df.to_csv(os.path.join(args.log_dir, f"test_result.epoch.{epoch}.csv"), index=False)
            else:
                print(f"model for epoch {epoch} not exist")

    if "batch" in args.test_by:
        # test by batch steps
        import numpy as np
        train_data_size = subprocess.check_output(f'wc -l {args.data_file_train}', shell=True)
        train_data_size = int(str(train_data_size).split(' ')[0][2:]) - 1
        num_saved_batches = int(np.floor(np.ceil(np.ceil(train_data_size * args.train_size)
                                                / args.ngpus / args.batch_size)
                                        * args.num_epochs / args.num_save_batches) + 1)
        print(f'num_saved_batches: {num_saved_batches}')
        for step in range(args.num_save_batches,
                          num_saved_batches * args.num_save_batches,
                          args.num_save_batches):
            if os.path.exists(os.path.join(args.log_dir, f"test_result.step.{step}.txt")) and not args.re_test:
                print(f"test result for step {step} already exists")
                continue
            if os.path.exists(os.path.join(args.log_dir, f"result_dict.batch.{step}.ddp_rank.0.json")):
                print(f"begin test for step {step}")
                trainer.load_model(step=step)
                test_result_dict, test_result_df = _test_one_epoch(trainer)
                with open(os.path.join(args.log_dir, f"test_result.step.{step}.txt"), "w") as f:
                    f.write(str(test_result_dict))
                test_result_df.to_csv(os.path.join(args.log_dir, f"test_result.step.{step}.csv"), index=False)
            else:
                print(f"model for step {step} not exists")
                continue
    # clean up the data sets
    trainer.dataset.clean_up()


def _test_one_epoch(trainer):
    trainer.testing_epoch_begin()
    while True:
        try:
            trainer.test_step()
        except StopIteration:
            break
    test_result_dict, test_result_df = trainer.testing_epoch_end()
    return test_result_dict, test_result_df


def ig_forward(x, trainer, batch, out_idx=0):
    # integrated gradient forward
    # x: (batch_size, num_nodes, x_channels)
    extra_args = batch.to_dict()
    # extra_args actually won't be used in the model
    for a in ('y', 'x', 'x_mask', 'x_alt', 'pos', 'batch',
                'edge_index', 'edge_attr',
                'edge_index_star', 'edge_attr_star',
                'node_vec_attr'):
        if a in extra_args:
            del extra_args[a]
    out, _, _ = trainer.forward(
        x.to(trainer.device), 
        x_mask=batch.x_mask.to(trainer.device),
        x_alt=batch.x_alt.to(trainer.device),
        pos=batch.pos.to(trainer.device),
        batch=batch.batch.to(trainer.device) if "batch" in batch else None,
        edge_index=batch.edge_index.to(trainer.device) if batch.edge_index is not None else None,
        edge_index_star=batch.edge_index_star.to(trainer.device) if "edge_index_star" in batch else None,
        edge_attr=batch.edge_attr.to(trainer.device) if batch.edge_attr is not None else None,
        edge_attr_star=batch.edge_attr_star.to(trainer.device) if "edge_attr_star" in batch else None,
        node_vec_attr=batch.node_vec_attr.to(trainer.device),
        extra_args=extra_args,
        return_attn=False,)
    # out is one-dim tensor
    # out = out.squeeze()
    return out[:, [out_idx, out_idx]]


def interpret(args, idxs=None, epoch=None, step=None, dryrun=False, four_fold=False):
    # interpret a dataset by attention, only for the data point of idxs in the dataset
    dataset_att = {"data_type": args.data_type,
                   "radius": args.radius,
                   "max_neighbors": args.max_num_neighbors,
                   "loop": args.loop,
                   "shuffle": False, 
                   "node_embedding_type": args.node_embedding_type,
                   "graph_type": args.graph_type,
                   "add_plddt": args.add_plddt,
                   "scale_plddt": args.scale_plddt,
                   "add_conservation": args.add_conservation,
                   "add_position": args.add_position,
                   "add_sidechain": args.add_sidechain,
                   "add_dssp": args.add_dssp,
                   "add_msa": args.add_msa,
                   "add_confidence": args.add_confidence,
                   "add_msa_contacts": args.add_msa_contacts,
                   "add_ptm": args.add_ptm,
                   "add_af2_single": args.add_af2_single,
                   "add_af2_pairwise": args.add_af2_pairwise,
                   "loaded_af2_single": args.loaded_af2_single,
                   "loaded_af2_pairwise": args.loaded_af2_pairwise,
                   "loaded_msa": args.loaded_msa,
                   "loaded_esm": args.loaded_esm,
                   "loaded_confidence": args.loaded_confidence,
                   "data_augment": args.data_augment,
                   "score_transfer": args.score_transfer,
                   "alt_type": args.alt_type,
                   "computed_graph": args.computed_graph,
                   "neighbor_type": args.neighbor_type,
                   "max_len": args.max_len,}
    if args.trainer_fn == "PreMode_trainer_noGraph":
        dataset_extra_args = {"padding": args.batch_size > 1}
    elif args.trainer_fn == "PreMode_trainer":
        dataset_extra_args = {}
    elif args.trainer_fn == "PreMode_trainer_SSP":
        dataset_extra_args = {}
    else:
        raise ValueError(f"trainer_fn {args.trainer_fn} not supported")
    if dryrun:
        dataset = None
    else:
        dataset = getattr(data, args.dataset)(
            data_file=args.data_file_test,
            **dataset_att,
            **dataset_extra_args,
        )
    # apply 4 fold cross validation
    if four_fold:
        main_log_dir = args.log_dir
        if idxs is None:
            idxs = list(range(len(dataset)))
            out_index = dataset.data.index
        else:
            out_index = dataset.data.index[idxs]
        x_embed_df = dataset.data.loc[out_index]
        for FOLD in range(4):
            # change args log_dir to the fold log_dir
            args.log_dir = os.path.join(main_log_dir, f"FOLD.{FOLD}/")
            _, ys, min_loss = interpret_core(args, dataset, idxs=idxs, epoch=epoch, step=step, dryrun=dryrun, four_fold=True)
            # change ys columns to original column name + '.FOLD.{FOLD}'
            ys.columns = [f"{c}.FOLD.{FOLD}" for c in ys.columns]
            x_embed_df = pd.concat([x_embed_df, ys], axis=1)
            x_embed_df[f"min_loss.FOLD.{FOLD}"] = min_loss
    else:
        x_embed_df = interpret_core(args, dataset, idxs=idxs, epoch=epoch, step=step, dryrun=dryrun)
        if dryrun:
            return
    if args.out_dir is None:
        args.out_dir = args.log_dir
    if not os.path.exists(args.out_dir) and not args.out_dir.endswith(".csv"):
        os.makedirs(args.out_dir)
    if args.out_dir.endswith(".csv"):
        x_embed_df.to_csv(args.out_dir, index=False)
    else:
        x_embed_df.to_csv(f"{args.out_dir}/x_embeds.csv", index=False)


def interpret_core(args, dataset, idxs=None, epoch=None, step=None, dryrun=False, four_fold=False):
    if args.seed_with_pl:
        import pytorch_lightning as pl
        pl.seed_everything(args.seed)
    else:
        random.seed(args.seed)
        np.random.seed(args.seed)
        torch.manual_seed(args.seed)
        torch.cuda.manual_seed_all(args.seed)
    hparams = vars(args)
    model_class = args.model_class
    # initialize model
    if args.load_model == "None" or args.load_model == "null" or args.load_model is None:
        my_model = create_model(hparams, model_class=model_class)
    else:
        my_model = create_model_and_load(hparams, model_class=model_class)
    if args.trainer_fn == "PreMode_trainer":
        trainer_fn = PreMode_trainer
    else:
        raise ValueError(f"trainer_fn {args.trainer_fn} not supported")
    if args.dataset.startswith("FullGraph") and not args.model.startswith("lora"):
        my_model = torch.compile(my_model)
    if args.hp_tune:
        my_model.load_state_dict(torch.load(f'{args.log_dir}/model.hp_tune.pt', map_location=torch.device("cpu")))
    my_model.eval()
    if dryrun:
        trainer = None
    else:
        trainer = trainer_fn(hparams=args, model=my_model, 
                            stage="test", dataset=dataset, device_id=args.gpu_id)
    if not args.hp_tune:
        # only load model if not hp_tune
        if epoch is not None:
            trainer.load_model(epoch=epoch)
            min_loss = None
        elif step is not None:
            trainer.load_model(step=step)
            min_loss = None
        else:
            if args.interpret_by is None:
                train_data_size = subprocess.check_output(f'wc -l {args.data_file_train}', shell=True)
                train_data_size = int(str(train_data_size).split(' ')[0][2:]) - 1
                num_saved_batches = int(np.floor(np.ceil(np.ceil(train_data_size * args.train_size)
                                                        / args.ngpus / args.batch_size)
                                                * args.num_epochs / args.num_save_batches) + 1)
                if num_saved_batches > args.num_epochs:
                    args.interpret_by = "batch"
                else:
                    args.interpret_by = "epoch"
            if args.interpret_by == "epoch":
                # find the min val loss epoch
                val_losses = []
                for epoch in range(args.num_epochs):
                    val_loss = []
                    for rank in range(args.ngpus):
                        with open(f"{args.log_dir}/result_dict.epoch.{epoch}.ddp_rank.{rank}.json", "r") as f:
                            result_dict = json.load(f)
                            val_loss.append(result_dict["val_loss"])
                    val_losses.append(np.mean(val_loss))
                min_val_loss_epoch = np.argmin(val_losses) + 1
                trainer.load_model(epoch=min_val_loss_epoch)
                min_loss = np.min(np.array(val_losses)[~np.isnan(val_losses)])
            elif args.interpret_by == "batch":
                # find the min val loss batch
                val_losses = []
                train_data_size = subprocess.check_output(f'wc -l {args.data_file_train}', shell=True)
                train_data_size = int(str(train_data_size).split(' ')[0][2:]) - 1
                num_saved_batches = int(np.floor(np.ceil(np.ceil(train_data_size * args.train_size)
                                                        / args.ngpus / args.batch_size)
                                                * args.num_epochs / args.num_save_batches) + 1)
                print(f'num_saved_batches: {num_saved_batches}')
                steps = list(range(args.num_save_batches,
                                num_saved_batches * args.num_save_batches,
                                args.num_save_batches))
                for step in steps:
                    val_loss = []
                    for rank in range(args.ngpus):
                        if (os.path.exists(f"{args.log_dir}/result_dict.batch.{step}.ddp_rank.{rank}.json")):
                            with open(f"{args.log_dir}/result_dict.batch.{step}.ddp_rank.{rank}.json", "r") as f:
                                result_dict = json.load(f)
                                val_loss.append(result_dict["val_loss"])
                    val_losses.append(np.mean(val_loss))
                min_val_loss_batch = steps[np.argmin(np.array(val_losses)[~np.isnan(val_losses)])]
                print(f"min_val_loss_batch: {min_val_loss_batch}")
                trainer.load_model(step=min_val_loss_batch)
                min_loss = np.min(np.array(val_losses)[~np.isnan(val_losses)])
            elif args.interpret_by == "both":
                # find the min val loss epoch
                val_losses = []
                for epoch in range(args.num_epochs):
                    val_loss = []
                    for rank in range(args.ngpus):
                        if os.path.exists(f"{args.log_dir}/result_dict.epoch.{epoch}.ddp_rank.{rank}.json"):
                            with open(f"{args.log_dir}/result_dict.epoch.{epoch}.ddp_rank.{rank}.json", "r") as f:
                                result_dict = json.load(f)
                                val_loss.append(result_dict["val_loss"])
                        else:
                            val_loss.append(np.nan)
                    val_losses.append(np.mean(val_loss))
                min_val_loss_epoch = np.argmin(val_losses) + 1
                min_epoch_loss = np.min(val_losses)
                # find the min val loss batch
                val_losses = []
                train_data_size = subprocess.check_output(f'wc -l {args.data_file_train}', shell=True)
                train_data_size = int(str(train_data_size).split(' ')[0][2:]) - 1
                num_saved_batches = int(np.floor(np.ceil(np.ceil(train_data_size * args.train_size)
                                                        / args.ngpus / args.batch_size)
                                                * args.num_epochs / args.num_save_batches) + 1)
                print(f'num_saved_batches: {num_saved_batches}')
                steps = list(range(args.num_save_batches,
                                   num_saved_batches * args.num_save_batches,
                                   args.num_save_batches))
                for step in steps:
                    val_loss = []
                    for rank in range(args.ngpus):
                        if (os.path.exists(f"{args.log_dir}/result_dict.batch.{step}.ddp_rank.{rank}.json")):
                            with open(f"{args.log_dir}/result_dict.batch.{step}.ddp_rank.{rank}.json", "r") as f:
                                result_dict = json.load(f)
                                val_loss.append(result_dict["val_loss"])
                        else:
                            val_loss.append(np.nan)
                    val_losses.append(np.mean(val_loss))
                if len(np.array(val_losses)[~np.isnan(val_losses)]) > 0:
                    # remove nan values steps
                    steps = np.array(steps)[~np.isnan(val_losses)]
                    # remove nan values val_losses
                    val_losses = np.array(val_losses)[~np.isnan(val_losses)]
                    min_val_loss_batch = steps[np.argmin(val_losses)]
                    min_batch_loss = np.min(val_losses)
                    min_loss = min(min_epoch_loss, min_batch_loss)
                else:
                    min_loss = min_epoch_loss
                if len(np.array(val_losses)[~np.isnan(val_losses)]) == 0 or min_epoch_loss < min_batch_loss:
                    print(f"min_val_loss_epoch: {min_val_loss_epoch}, loss: {min_epoch_loss}")
                    if dryrun:
                        print("dryrun mode, skip interpret")
                        return
                    trainer.load_model(epoch=min_val_loss_epoch)
                else:
                    print(f"min_val_loss_batch: {min_val_loss_batch}, loss: {min_batch_loss}")
                    if dryrun:
                        print("dryrun mode, skip interpret")
                        return
                    trainer.load_model(step=min_val_loss_batch)
    if idxs is None:
        idxs = list(range(len(dataset)))
        out_index = dataset.data.index
    else:
        out_index = dataset.data.index[idxs]
    # interpret one sequence at a time
    x_embeds = []
    x_jacobs = []
    ys = []
    y_covars = []
    if args.use_ig:
        ig = IntegratedGradients(ig_forward)
    # set up jacobian function for torch input
    # x is second last layer output, y is target 
    if args.use_jacob:
        def jacobian_fn(x, tgt=None):
            y = trainer.model.output_model.post_reduce(x)
            if tgt is None:
                tgt = torch.ones_like(y).to(trainer.device)
            res = trainer.loss_fn(y, tgt, reduce=False, reduction="none")
            return res
    for idx in idxs:
        batch = dataset.__getitem__(idx)
        if args.dataset.startswith("FullGraph"):
            # we need to expand the batch dim 1
            for k in batch:
                batch[k] = batch[k].unsqueeze(0)
        y_covar, y, x_embed, attn_weight_layers = trainer.interpret_step(batch)
        if args.loss_fn == "GP_loss":
            y_covars.append(y_covar.detach().cpu().numpy())
        elif args.loss_fn == "weighted_loss_betabinomial":
            alpha = y[:, 0]
            beta = y[:, 1]
            y_mean = alpha / (alpha + beta)
            y_covar = y_mean * (1 - y_mean) / (alpha + beta + 1)
            y_covars.append(y_covar.detach().cpu().numpy())
            y = y_mean
        elif args.loss_fn == "gaussian_loss":
            y_mean = y[:, 0]
            y_covar = y[:, 1]
            y_covars.append(y_covar.detach().cpu().numpy())
            y = y_mean
        if isinstance(batch, dict):
            batch = sn(**batch)
        if args.use_ig:
            x = batch.x.requires_grad_(True)
            x_gradients = []
            for i in range(batch.y.shape[1]):
                x_gradient = ig.attribute(
                    x, target=batch.y[:, [i]].int(),
                    additional_forward_args=(trainer, batch, i),
                    internal_batch_size=1,
                    )
                x_gradients.append(x_gradient.detach().cpu().numpy())
        else:
            x_gradients = None
        if args.use_jacob:
            x_jacob = torch.autograd.functional.jacobian(
                jacobian_fn, 
                (x_embed.to(trainer.device, non_blocking=True))
            )
            if hasattr(batch, "score_mask"):
                x_jacobs.append(x_jacob[0, np.nonzero(batch.score_mask.numpy())[1][0], :, 0, 0].detach().cpu().numpy())
            else:
                x_jacobs.append(x_jacob[0, 0].detach().cpu().numpy())
        # select the corresponding alt output for the data point
        if "Onesite" in args.dataset:
            # reshape y to (batch_size, -1)
            y = y.reshape(y.shape[0], -1)
        while len(x_embed.shape) > 2:
            x_embed = x_embed.squeeze(0)
        while (len(y.shape) > 2):
            y = y.squeeze(-1)
        # if args.dataset.startswith("FullGraph") and not args.model.startswith("lora"):
        #     x_embed = x_embed[0]
        x_embeds.append(x_embed.detach().cpu().numpy())
        ys.append(y.detach().cpu().numpy())
        # print(f"loss for data point idx {idx}: {loss}")
        # print(f"logits for data point idx {idx}: {y}")
        # print(f"save attention weights for data point idx {idx}")
        if args.save_attn:
            if args.out_dir is None:
                save_file_name = f"{args.log_dir}/attn_weights.{idx}.pkl"
            else:
                if not args.out_dir.endswith(".csv"):
                    save_file_name = f"{args.out_dir}/attn_weights.{idx}.pkl"
                else:
                    save_file_name = f"{args.out_dir.replace('.csv', '')}.{idx}.pkl"
            with open(save_file_name, "wb") as f:
                pickle.dump(([a.detach().cpu().numpy() for a in attn_weight_layers], 
                                batch.edge_index_star.detach().cpu().numpy(),
                                dataset.data.iloc[idx], 
                                (dataset.mutations[idx].seq_start_orig, dataset.mutations[idx].seq_end_orig,
                                 dataset.mutations[idx].seq_start, dataset.mutations[idx].seq_end), 
                                y.detach().cpu().numpy(),
                                x_gradients), f)
    x_embeds = np.concatenate(x_embeds, axis=0)
    x_embeds = pd.DataFrame(x_embeds, index=out_index)
    x_embeds.columns = [f'X.{i}' for i in range(x_embeds.shape[1])]
    # assign column names
    if args.use_jacob:
        x_jacobs = np.concatenate(x_jacobs, axis=0)
        x_jacobs_df = pd.DataFrame(x_jacobs, index=out_index)
        x_jacobs_df.columns = [f'jacob.{i}' for i in range(x_jacobs_df.shape[1])]
    ys = pd.DataFrame(np.concatenate(ys, axis=0), index=out_index)
    if args.loss_fn == "GP_loss" or args.loss_fn == "weighted_loss_betabinomial" or args.loss_fn == "gaussian_loss":
        y_covars = pd.DataFrame(np.concatenate(y_covars, axis=0), index=out_index)
        if y_covars.shape[1] == 1:
            y_covars.columns = ["logits_var"]
        else:
            y_covars.columns=[f'logits_var.{i}' for i in range(y_covars.shape[1])]
    if ys.shape[1] == 1:
        ys.columns = ["logits"]
    else:
        ys.columns=[f'logits.{i}' for i in range(ys.shape[1])]
    x_embed_df = pd.concat([dataset.data.loc[out_index], ys, x_embeds], axis=1)
    if args.loss_fn == "GP_loss" or args.loss_fn == "weighted_loss_betabinomial" or args.loss_fn == "gaussian_loss":
        x_embed_df = pd.concat([x_embed_df, y_covars], axis=1)
    if args.use_jacob:
        x_embed_df = pd.concat([x_embed_df, x_jacobs_df], axis=1)
    # clean up the data sets
    trainer.dataset.clean_up()
    # add min_loss to the x_embed_df
    x_embed_df["min_loss"] = min_loss
    if four_fold:
        return x_embed_df, ys, min_loss
    else:
        return x_embed_df


def test_scalar_invariance(args):
    import torch
    hparams = vars(args)
    torch.manual_seed(1234)
    rotate = torch.tensor(
        [
            [0.9886788, -0.1102370, 0.1017945],
            [0.1363630, 0.9431761, -0.3030248],
            [-0.0626055, 0.3134752, 0.9475304],
        ]
    )
    dataset_att = {"data_type": args.data_type,
                   "radius": args.radius,
                   "max_neighbors": args.max_num_neighbors,
                   "loop": args.loop,
                   "shuffle": False, 
                   "node_embedding_type": args.node_embedding_type,
                   "graph_type": args.graph_type,
                   "add_plddt": args.add_plddt,
                   "scale_plddt": args.scale_plddt,
                   "add_conservation": args.add_conservation,
                   "add_position": args.add_position,
                   "add_sidechain": args.add_sidechain,
                   "add_dssp": args.add_dssp,
                   "add_msa": args.add_msa,
                   "add_confidence": args.add_confidence,
                   "add_msa_contacts": args.add_msa_contacts,
                   "add_ptm": args.add_ptm,
                   "loaded_msa": args.loaded_msa,
                   "loaded_esm": args.loaded_esm,
                   "loaded_confidence": args.loaded_confidence,
                   "data_augment": args.data_augment,
                   "score_transfer": args.score_transfer,
                   "alt_type": args.alt_type,
                   "computed_graph": args.computed_graph,
                   "neighbor_type": args.neighbor_type,
                   "max_len": args.max_len,}
    datasets = getattr(data, args.dataset)(
            data_file=f"{args.data_file_train}",
            gpu_id=0,
            **dataset_att,
        )
    dataloader = torch.utils.data.DataLoader(
        datasets,
        batch_size=2,
        shuffle=False,
        num_workers=0,
    )
    data_point = next(iter(dataloader))
    data_point["edge_index"] = None
    data_point["edge_index_star"] = None
    data_point["edge_attr_star"] = None
    data_point["batch"] = None
    hparams["drop_out"] = 0
    model = create_model(hparams, model_class=args.model_class)
    # get data points
    pos = torch.randn(data_point["x"].shape[0], data_point["x"].shape[1], 3)
    node_vec_attr = torch.randn(data_point["x"].shape[0], data_point["x"].shape[1], 3, 35)
    y = model(data_point["x"], data_point["x_mask"], data_point["x_alt"], pos, 
              data_point["edge_index"], data_point["edge_index_star"], 
              data_point["edge_attr"], data_point["edge_attr_star"], 
              node_vec_attr, data_point["batch"], data_point, return_attn=True)[0]
    y_rot = model(data_point["x"], data_point["x_mask"], data_point["x_alt"], pos @ rotate, 
                  data_point["edge_index"], data_point["edge_index_star"], 
                  data_point["edge_attr"], data_point["edge_attr_star"], 
                  (node_vec_attr.permute(0, 1, 3, 2) @ rotate).permute(0, 1, 3, 2), data_point["batch"], data_point,
                  return_attn=True)[0]
    torch.testing.assert_allclose(y, y_rot)


def test_scalar_invariance_2(args):
    import torch
    from torch_geometric.loader import DataLoader
    hparams = vars(args)
    torch.manual_seed(1234)
    rotate = torch.tensor(
        [
            [0.9886788, -0.1102370, 0.1017945],
            [0.1363630, 0.9431761, -0.3030248],
            [-0.0626055, 0.3134752, 0.9475304],
        ]
    )
    dataset_att = {"data_type": args.data_type,
                   "radius": args.radius,
                   "max_neighbors": args.max_num_neighbors,
                   "loop": args.loop,
                   "shuffle": False, 
                   "node_embedding_type": args.node_embedding_type,
                   "graph_type": args.graph_type,
                   "add_plddt": args.add_plddt,
                   "scale_plddt": args.scale_plddt,
                   "add_conservation": args.add_conservation,
                   "add_position": args.add_position,
                   "add_sidechain": args.add_sidechain,
                   "add_dssp": args.add_dssp,
                   "add_msa": args.add_msa,
                   "add_confidence": args.add_confidence,
                   "add_msa_contacts": args.add_msa_contacts,
                   "add_ptm": args.add_ptm,
                   "loaded_msa": args.loaded_msa,
                   "loaded_esm": args.loaded_esm,
                   "loaded_confidence": args.loaded_confidence,
                   "data_augment": args.data_augment,
                   "score_transfer": args.score_transfer,
                   "alt_type": args.alt_type,
                   "computed_graph": args.computed_graph,
                   "neighbor_type": args.neighbor_type,
                   "max_len": args.max_len,}
    datasets = getattr(data, args.dataset)(
            data_file=f"{args.data_file_train}",
            gpu_id=0,
            **dataset_att,
        )
    dataloader = DataLoader(
        datasets,
        batch_size=2,
        shuffle=False,
        num_workers=0,
    )
    data_point = next(iter(dataloader))
    model = create_model(hparams, model_class=args.model_class)
    # get data points
    pos = torch.randn(data_point.x.shape[0], 3)
    node_vec_attr = torch.randn(data_point.x.shape[0], 3, 35)
    y = model(data_point.x, data_point.x_mask, data_point.x_alt, pos, 
              data_point.edge_index, data_point.edge_index_star, 
              data_point.edge_attr, data_point.edge_attr_star, 
              node_vec_attr, data_point.batch, )[0]
    y_rot = model(data_point.x, data_point.x_mask, data_point.x_alt, pos @ rotate, 
                  data_point.edge_index, data_point.edge_index_star, 
                  data_point.edge_attr, data_point.edge_attr_star, 
                  (node_vec_attr.permute(0, 2, 1) @ rotate).permute(0, 2, 1), data_point.batch)[0]
    torch.testing.assert_allclose(y, y_rot)


if __name__ == "__main__":
    # main_pl()
    _args = get_args()
    if _args.mode == "train":
        main(_args)
    elif _args.mode == "train_4_fold":
        main(_args, continue_train=False, four_fold=True)
    elif _args.mode == "adaptive_train":
        adaptive_main(_args)
    elif _args.mode == "continue_train":
        main(_args, continue_train=True)
    elif _args.mode == "test":
        _test(_args)
    elif _args.mode == "train_and_test":
        main(_args)
        _args.re_test = True
        _test(_args)
    elif _args.mode == "interpret":
        if _args.interpret_idxes is not None:
            _args.interpret_idxes = [int(i) for i in _args.interpret_idxes.split(",")]
        interpret(_args, idxs=_args.interpret_idxes, step=_args.interpret_step, epoch=_args.interpret_epoch)
    elif _args.mode == "interpret_dry":
        if _args.interpret_idxes is not None:
            _args.interpret_idxes = [int(i) for i in _args.interpret_idxes.split(",")]
        interpret(_args, idxs=_args.interpret_idxes, step=_args.interpret_step, epoch=_args.interpret_epoch, dryrun=True)
    elif _args.mode == "interpret_4_fold":
        if _args.interpret_idxes is not None:
            _args.interpret_idxes = [int(i) for i in _args.interpret_idxes.split(",")]
        interpret(_args, idxs=_args.interpret_idxes, step=_args.interpret_step, epoch=_args.interpret_epoch, dryrun=False, four_fold=True)
    elif _args.mode == "test_equivariancy":
        test_scalar_invariance(_args)
    elif _args.mode == "test_equivariancy_2":
        test_scalar_invariance_2(_args)
    elif _args.mode == "hp_tune":
        hp_tune(_args)    
    else:
        raise ValueError(f"mode {_args.mode} not supported")