|
''' |
|
Unsupervised fine-tuning of UniRep on evolutionary data, "evo-tuning" |
|
''' |
|
|
|
import argparse |
|
import os |
|
import pathlib |
|
|
|
import numpy as np |
|
from sklearn.model_selection import train_test_split |
|
import tensorflow.compat.v1 as tf |
|
tf.disable_v2_behavior() |
|
|
|
from unirep import babbler1900 as babbler |
|
import utils |
|
|
|
|
|
|
|
|
|
def main(): |
|
parser = argparse.ArgumentParser() |
|
parser.add_argument('seqs_fasta_path', type=pathlib.Path) |
|
parser.add_argument('save_weights_dir', type=pathlib.Path) |
|
parser.add_argument('--initial_weights_dir', type=pathlib.Path, |
|
default="weights/unirep/global") |
|
parser.add_argument('--batch_size', type=int, default=128) |
|
parser.add_argument('--max_seq_len', type=int, default=500) |
|
parser.add_argument('--num_steps', type=int, default=10000) |
|
parser.add_argument('--learning_rate', type=float, default=0.00001) |
|
args = parser.parse_args() |
|
|
|
|
|
tf.set_random_seed(0) |
|
np.random.seed(0) |
|
|
|
print("Num GPUs Available: ", |
|
len(tf.config.experimental.list_physical_devices('GPU'))) |
|
|
|
|
|
|
|
|
|
|
|
|
|
b = babbler(batch_size=args.batch_size, model_path=args.initial_weights_dir) |
|
|
|
|
|
seqs_all = utils.read_fasta(args.seqs_fasta_path) |
|
seqs = dict() |
|
seqs['train'], seqs['val'] = train_test_split(seqs_all, test_size=0.2) |
|
|
|
bucket_ops = { |
|
'train': None, |
|
'val': None, |
|
} |
|
for mode in ['train', 'val']: |
|
prefix = str(args.seqs_fasta_path).replace('.a2m', '') |
|
formatted_seqs_path = prefix + f'_{mode}_formatted.txt' |
|
with open(formatted_seqs_path, "w") as destination: |
|
for i,seq in enumerate(seqs[mode]): |
|
seq = seq.upper().replace('-', 'X') |
|
seq = seq.replace('.', 'X') |
|
if b.is_valid_seq(seq, max_len=args.max_seq_len): |
|
formatted = ",".join(map(str,b.format_seq(seq))) |
|
destination.write(formatted) |
|
destination.write('\n') |
|
bucket_ops[mode] = b.bucket_batch_pad(formatted_seqs_path, |
|
lower=100, upper=args.max_seq_len, interval=50) |
|
|
|
logits, seqloss, x_ph, y_ph, batch_size_ph, initial_state_ph = ( |
|
b.get_babbler_ops()) |
|
optimizer = tf.train.AdamOptimizer(args.learning_rate) |
|
tuning_op = optimizer.minimize(seqloss) |
|
|
|
args.save_weights_dir.mkdir(parents=True, exist_ok=True) |
|
|
|
train_loss = np.zeros(args.num_steps) |
|
val_loss = np.zeros(args.num_steps) |
|
with tf.Session() as sess: |
|
sess.run(tf.global_variables_initializer()) |
|
sess.graph.finalize() |
|
for i in range(args.num_steps): |
|
print(f"Step {i}") |
|
batch_train = sess.run(bucket_ops['train']) |
|
train_loss[i], __, = sess.run([seqloss, tuning_op], |
|
feed_dict={ |
|
x_ph: batch_train[:, :-1], |
|
y_ph: batch_train[:, 1:], |
|
batch_size_ph: args.batch_size, |
|
initial_state_ph:b._zero_state |
|
}, |
|
) |
|
batch_val = sess.run(bucket_ops['val']) |
|
val_loss[i] = sess.run(seqloss, |
|
feed_dict={ |
|
x_ph: batch_val[:, :-1], |
|
y_ph: batch_val[:, 1:], |
|
batch_size_ph: args.batch_size, |
|
initial_state_ph:b._zero_state |
|
}, |
|
) |
|
print("Step {0}: {1} (train), {2} (val)".format( |
|
i, train_loss[i], val_loss[i])) |
|
|
|
if i % 1000 == 0 and i > 0: |
|
suffix = f'_{int(i / 1000)}k' |
|
savedir = os.path.join(args.save_weights_dir, suffix) |
|
pathlib.Path(savedir).mkdir(exist_ok=True) |
|
|
|
b.dump_weights(sess, dir_name=savedir) |
|
|
|
np.savetxt( |
|
os.path.join(args.save_weights_dir, 'loss_trajectory_train.npy'), |
|
train_loss) |
|
np.savetxt( |
|
os.path.join(args.save_weights_dir, 'loss_trajectory_val.npy'), |
|
val_loss) |
|
|
|
b.dump_weights(sess, dir_name=args.save_weights_dir) |
|
|
|
np.savetxt( |
|
os.path.join(args.save_weights_dir, 'loss_trajectory_train.npy'), |
|
train_loss) |
|
np.savetxt( |
|
os.path.join(args.save_weights_dir, 'loss_trajectory_val.npy'), |
|
val_loss) |
|
|
|
|
|
if __name__ == "__main__": |
|
main() |
|
|