Upload folder using huggingface_hub
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- .gitattributes +11 -0
- ALL.csv.gz +3 -0
- ASPA.tgz +3 -0
- CCR5.tgz +3 -0
- CXCR4.tgz +3 -0
- CYP2C9.tgz +3 -0
- GCK.tgz +3 -0
- ICC.seed.0.tgz +3 -0
- ICC.seed.1.tgz +3 -0
- ICC.seed.2.tgz +3 -0
- ICC.seed.3.tgz +3 -0
- ICC.seed.4.tgz +3 -0
- MSA.tgz +3 -0
- MSA.tgz.part-aa +3 -0
- NUDT15.tgz +3 -0
- PTEN.bin.tgz +3 -0
- PTEN.replicate.rest.1.tgz +3 -0
- PTEN.replicate.rest.2.tgz +3 -0
- PTEN.replicate.rest.3.tgz +3 -0
- PTEN.replicate.rest.4.tgz +3 -0
- PTEN.replicate.rest.5.tgz +3 -0
- PTEN.replicate.rest.6.tgz +3 -0
- PTEN.replicate.rest.7.tgz +3 -0
- PTEN.replicate.rest.8.tgz +3 -0
- PTEN.tgz +3 -0
- SNCA.tgz +3 -0
- Stab.tgz +3 -0
- af2.files.tgz.part-aa +3 -0
- esm.MSA.tgz.part-aa +3 -0
- esm.MSA.tgz.part-ab +3 -0
- esm.files.tgz.part-aa +3 -0
- esm.files.tgz.part-ab +3 -0
- esm.files.tgz.part-ac +3 -0
- esm.files.tgz.part-ad +3 -0
- esm.files.tgz.part-ae +3 -0
- esm.inference.py +177 -0
- fluorescence.tgz +3 -0
- gMVP.MSA.tgz.part-aa +3 -0
- preprocess.gene.pfam.R +83 -0
- preprocess.separate.gene.R +63 -0
- preprocess.separate.gene.itan.R +258 -0
- preprocess.separate.gene.subset.R +52 -0
- pretrain.tgz.part-aa +3 -0
- pretrain/testing.csv.gz +3 -0
- pretrain/training.0.csv.gz +3 -0
- pretrain/training.1.csv.gz +3 -0
- pretrain/training.2.csv.gz +3 -0
- pretrain/training.3.csv.gz +3 -0
- pretrain/training.csv.gz +3 -0
- ptm.small.csv.gz +3 -0
.gitattributes
CHANGED
@@ -71,3 +71,14 @@ data.files/gMVP.MSA.tgz.part-ab filter=lfs diff=lfs merge=lfs -text
|
|
71 |
parse.input.table/swissprot_and_human.full.seq.csv.tgz.part-aa filter=lfs diff=lfs merge=lfs -text
|
72 |
parse.input.table/swissprot_and_human.full.seq.csv.tgz.part-ab filter=lfs diff=lfs merge=lfs -text
|
73 |
parse.input.table/swissprot_and_human.full.seq.csv.tgz.part-ac filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
71 |
parse.input.table/swissprot_and_human.full.seq.csv.tgz.part-aa filter=lfs diff=lfs merge=lfs -text
|
72 |
parse.input.table/swissprot_and_human.full.seq.csv.tgz.part-ab filter=lfs diff=lfs merge=lfs -text
|
73 |
parse.input.table/swissprot_and_human.full.seq.csv.tgz.part-ac filter=lfs diff=lfs merge=lfs -text
|
74 |
+
MSA.tgz.part-aa filter=lfs diff=lfs merge=lfs -text
|
75 |
+
af2.files.tgz.part-aa filter=lfs diff=lfs merge=lfs -text
|
76 |
+
esm.MSA.tgz.part-aa filter=lfs diff=lfs merge=lfs -text
|
77 |
+
esm.MSA.tgz.part-ab filter=lfs diff=lfs merge=lfs -text
|
78 |
+
esm.files.tgz.part-aa filter=lfs diff=lfs merge=lfs -text
|
79 |
+
esm.files.tgz.part-ab filter=lfs diff=lfs merge=lfs -text
|
80 |
+
esm.files.tgz.part-ac filter=lfs diff=lfs merge=lfs -text
|
81 |
+
esm.files.tgz.part-ad filter=lfs diff=lfs merge=lfs -text
|
82 |
+
esm.files.tgz.part-ae filter=lfs diff=lfs merge=lfs -text
|
83 |
+
gMVP.MSA.tgz.part-aa filter=lfs diff=lfs merge=lfs -text
|
84 |
+
pretrain.tgz.part-aa filter=lfs diff=lfs merge=lfs -text
|
ALL.csv.gz
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7ba809ae66bc775ff9072934ade95a242fc378962eb6562fca5e926e6eadd5d2
|
3 |
+
size 11103682
|
ASPA.tgz
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f5e401c824edb3ae63e05d973dafb82a40e0c0b4167f8ea8a44f255cb2e61a2f
|
3 |
+
size 6497828
|
CCR5.tgz
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:32b1fd9f3c79438e5804c24fbfd63db0f102741d60837e1735d03e554005027a
|
3 |
+
size 5790823
|
CXCR4.tgz
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5be7e596768b968ec92ae5a74857fc9d047d03a1387fed181fa378edf41eb057
|
3 |
+
size 5826481
|
CYP2C9.tgz
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d89ae48ab501c9b110c8da0b89ebe40a8843b3af8a80ce26a751f9548f246984
|
3 |
+
size 7476136
|
GCK.tgz
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6af4a7f205161f42e26b645c0c7baa468be540af912a5349cc700945a10429e7
|
3 |
+
size 9954541
|
ICC.seed.0.tgz
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:fb36b5eadfefc849887c480554752f43a6b76c545a2ced700d260a1cfe56c592
|
3 |
+
size 4588973
|
ICC.seed.1.tgz
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:402f281b6b1f83da14b1b1ab81774c2da45a67883f6c0d9d778a804a15722bd2
|
3 |
+
size 4577813
|
ICC.seed.2.tgz
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:82a8afea44f05506266ffcddce3dcbff145aad59427b606b7c4d5356fba26a80
|
3 |
+
size 4577738
|
ICC.seed.3.tgz
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4b52b45a04a73cf531bc9be4ef31785dc3dd2f8b0cb649aa4b8fd3ed3ec5c99e
|
3 |
+
size 4588209
|
ICC.seed.4.tgz
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:405b089729ebdcc19710f135d06e31896cfbd4a99b0e4098926443aa218817f9
|
3 |
+
size 4563681
|
MSA.tgz
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d8b28e09ba5f647d720f865fc37c21063efe8fa5f6b1fe67d4b9f1348f21c6b5
|
3 |
+
size 853335
|
MSA.tgz.part-aa
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:670504f78fb5828face000895457b0bdf006e2c762f90546d4160c1741abdad7
|
3 |
+
size 756213964
|
NUDT15.tgz
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ac39d81c5d54a408e4a024961cd889f2702cab1f7ed40d83262067f1314c494f
|
3 |
+
size 2648155
|
PTEN.bin.tgz
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:dbe7d33dbbf5630c5c161986eb052f12deb61b7ccbf678fa7ff5bc7897ba4c59
|
3 |
+
size 983279
|
PTEN.replicate.rest.1.tgz
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0a5a8491533eb09736c97526c22aa83220d3df81cbc3e086d0c97cf82fecbac4
|
3 |
+
size 4065895
|
PTEN.replicate.rest.2.tgz
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7e22735a538e5dc3ffbf3926514ea32a3b8ef5638f0fd274eacab37ec3e076f7
|
3 |
+
size 4065999
|
PTEN.replicate.rest.3.tgz
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a6bb4a7d231337c8436e3a0b46af24e7b8e87953c75676ed9849a6d27b87157d
|
3 |
+
size 4065725
|
PTEN.replicate.rest.4.tgz
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:90216071931145f6c8b4a2ec31224f7bb1edce8a43490e16a57173a6cc634433
|
3 |
+
size 4065705
|
PTEN.replicate.rest.5.tgz
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:87694c8d852f9d79230f7e064b4079902b17b4e4a66347b9b359902d987d8e23
|
3 |
+
size 4065975
|
PTEN.replicate.rest.6.tgz
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7c2afb3de5c57da35333d61dc11e48732916455cd4f48430c0291161702797fa
|
3 |
+
size 4065851
|
PTEN.replicate.rest.7.tgz
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:470a04794e6e88bc525ca7ca9de5f05ba0c4406cd321b3aa11a6f77beda102d2
|
3 |
+
size 4065635
|
PTEN.replicate.rest.8.tgz
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c9004017f797684b8166ab337e3ba7211a0920fbc733d69ef1192d449d5ce51b
|
3 |
+
size 4065531
|
PTEN.tgz
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4eff76435a175961076847bdea25b79f2a45a548a9b1f393dc1d73a32fbca170
|
3 |
+
size 4244420
|
SNCA.tgz
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:da09fe734efc81689f94e280656d497f3c3118e3389498b945bbae5daa0bd562
|
3 |
+
size 1932672
|
Stab.tgz
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7b4332f6557b56d355eb012317070675941c985f217f5a52c032e4789af5dc1f
|
3 |
+
size 49191908
|
af2.files.tgz.part-aa
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b8c99e093f3deb83e5cf57f7d3f2003af69268e2d7020342d23d98dfe8464342
|
3 |
+
size 1747009312
|
esm.MSA.tgz.part-aa
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a2a14923d1aaea14ad3ccedaafc5cc89b819811cc6fd8fd58584a7572dff0d91
|
3 |
+
size 10737418240
|
esm.MSA.tgz.part-ab
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a40159327f7454b4ff2ee5285e3bb7d778936bca39e41649d369aa3a3499a6aa
|
3 |
+
size 2929687838
|
esm.files.tgz.part-aa
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:98a5c81d3651a6cc33c0e99a4e2b206fae7ee26c3bf9a0df8ee006741004a8c6
|
3 |
+
size 10737418240
|
esm.files.tgz.part-ab
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9caf98a5e3acba2a0ca3f9a3c3effe2803e82c0a3114bf5f911f77f105e9a949
|
3 |
+
size 10737418240
|
esm.files.tgz.part-ac
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:fa44afe7158f565e229a8ead8d8760cb8393340c6e3287e457385d9678cb31df
|
3 |
+
size 10737418240
|
esm.files.tgz.part-ad
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:91d4e1b0fa3a399a6755537f64783cbe6eb0a731e2d7812f091a4919d3c39268
|
3 |
+
size 10737418240
|
esm.files.tgz.part-ae
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b975435639ee8fc7ab9b45da83a35dc2f246a943aec53a59d459b6a46ab6a85d
|
3 |
+
size 362286942
|
esm.inference.py
ADDED
@@ -0,0 +1,177 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import pandas as pd
|
2 |
+
import numpy as np
|
3 |
+
import os
|
4 |
+
import esm
|
5 |
+
import torch
|
6 |
+
import argparse
|
7 |
+
|
8 |
+
os.environ['CUDA_LAUNCH_BLOCKING'] = '-1'
|
9 |
+
|
10 |
+
|
11 |
+
def precompute_sequence(transcript_id, sequence, esm_model, batch_converter, out_dir, device_id=0):
|
12 |
+
if os.path.exists(os.path.join(out_dir, transcript_id + '.contacts.npy')):
|
13 |
+
return
|
14 |
+
else:
|
15 |
+
print('begin precompute sequence for {}'.format(transcript_id))
|
16 |
+
try:
|
17 |
+
data = [(transcript_id, sequence)]
|
18 |
+
_, _, toks = batch_converter(data)
|
19 |
+
except:
|
20 |
+
print(transcript_id)
|
21 |
+
return
|
22 |
+
toks = toks.to(f'cuda:{device_id}')
|
23 |
+
aa = toks.shape[1]
|
24 |
+
if aa <= 2250:
|
25 |
+
print(f"{transcript_id} has {toks.shape[1]} amino acids")
|
26 |
+
return
|
27 |
+
with torch.no_grad():
|
28 |
+
out = esm_model(toks, repr_layers=[33], return_contacts=True, need_head_weights=False)
|
29 |
+
representations = out["representations"][33][0].to(device='cpu').detach().numpy()
|
30 |
+
# output is batch x layers x heads x seqlen x seqlen
|
31 |
+
# attentions = out["attentions"][0].to(device="cpu").detach().numpy()
|
32 |
+
contacts = out['contacts'][0].to(device="cpu").detach().numpy()
|
33 |
+
logits = out['logits'][0].to(device="cpu").detach().numpy()
|
34 |
+
np.save(
|
35 |
+
f"{out_dir}/{transcript_id}.representations.layer.48.npy",
|
36 |
+
representations,
|
37 |
+
)
|
38 |
+
np.save(
|
39 |
+
f"{out_dir}/{transcript_id}.contacts.npy",
|
40 |
+
contacts,
|
41 |
+
)
|
42 |
+
np.save(
|
43 |
+
f"{out_dir}/{transcript_id}.logits.npy",
|
44 |
+
logits,
|
45 |
+
)
|
46 |
+
return
|
47 |
+
|
48 |
+
|
49 |
+
def precompute_sequence_multiple_gpus(transcript_id, sequence, esm_model, batch_converter, out_dir):
|
50 |
+
if os.path.exists(os.path.join(out_dir, transcript_id + '.contacts.npy')):
|
51 |
+
return
|
52 |
+
else:
|
53 |
+
print('begin precompute sequence for {}'.format(transcript_id))
|
54 |
+
try:
|
55 |
+
data = [(transcript_id, sequence)]
|
56 |
+
_, _, toks = batch_converter(data)
|
57 |
+
except:
|
58 |
+
print(transcript_id)
|
59 |
+
return
|
60 |
+
toks = toks.to('cuda:0')
|
61 |
+
if toks.shape[1] > 30000:
|
62 |
+
print(f"{transcript_id} has {toks.shape[1]} amino acids, don't proceed")
|
63 |
+
return
|
64 |
+
print(f"{transcript_id} has {toks.shape[1]} amino acids")
|
65 |
+
if toks.shape[1] > 5500:
|
66 |
+
need_head_weights = False
|
67 |
+
return_contacts = False
|
68 |
+
else:
|
69 |
+
need_head_weights = True
|
70 |
+
return_contacts = True
|
71 |
+
with torch.no_grad():
|
72 |
+
assert toks.ndim == 2
|
73 |
+
padding_mask = toks.eq(esm_model.padding_idx) # B, T
|
74 |
+
x = esm_model.embed_scale * esm_model.embed_tokens(toks)
|
75 |
+
|
76 |
+
if esm_model.token_dropout:
|
77 |
+
x.masked_fill_((toks == esm_model.mask_idx).unsqueeze(-1), 0.0)
|
78 |
+
# x: B x T x C
|
79 |
+
mask_ratio_train = 0.15 * 0.8
|
80 |
+
src_lengths = (~padding_mask).sum(-1)
|
81 |
+
mask_ratio_observed = (toks == esm_model.mask_idx).sum(-1).to(x.dtype) / src_lengths
|
82 |
+
x = x * (1 - mask_ratio_train) / (1 - mask_ratio_observed)[:, None, None]
|
83 |
+
|
84 |
+
if padding_mask is not None:
|
85 |
+
x = x * (1 - padding_mask.unsqueeze(-1).type_as(x))
|
86 |
+
|
87 |
+
repr_layers = {33}
|
88 |
+
hidden_representations = {}
|
89 |
+
if 0 in repr_layers:
|
90 |
+
hidden_representations[0] = x
|
91 |
+
if need_head_weights:
|
92 |
+
attn_weights = []
|
93 |
+
# (B, T, E) => (T, B, E)
|
94 |
+
x = x.transpose(0, 1)
|
95 |
+
if not padding_mask.any():
|
96 |
+
padding_mask = None
|
97 |
+
for layer_idx, layer in enumerate(esm_model.layers):
|
98 |
+
x = x.to(f'cuda:{layer_idx // 9}')
|
99 |
+
x, attn = layer(
|
100 |
+
x,
|
101 |
+
self_attn_padding_mask=padding_mask,
|
102 |
+
need_head_weights=need_head_weights,
|
103 |
+
)
|
104 |
+
if (layer_idx + 1) in repr_layers:
|
105 |
+
hidden_representations[layer_idx + 1] = x.transpose(0, 1)
|
106 |
+
if need_head_weights:
|
107 |
+
# (H, B, T, T) => (B, H, T, T)
|
108 |
+
attn_weights.append(attn.transpose(1, 0).cpu())
|
109 |
+
x = esm_model.emb_layer_norm_after(x)
|
110 |
+
x = x.transpose(0, 1) # (T, B, E) => (B, T, E)
|
111 |
+
|
112 |
+
# last hidden representation should have layer norm applied
|
113 |
+
if (layer_idx + 1) in repr_layers:
|
114 |
+
hidden_representations[layer_idx + 1] = x
|
115 |
+
# lm head is on cuda:0, x is on cuda:3
|
116 |
+
x = esm_model.lm_head(x.to('cuda:0'))
|
117 |
+
out = {"logits": x, "representations": hidden_representations}
|
118 |
+
if need_head_weights:
|
119 |
+
# attentions: B x L x H x T x T
|
120 |
+
attentions = torch.stack(attn_weights, 1)
|
121 |
+
if padding_mask is not None:
|
122 |
+
attention_mask = 1 - padding_mask.type_as(attentions)
|
123 |
+
attention_mask = attention_mask.unsqueeze(1) * attention_mask.unsqueeze(2)
|
124 |
+
attentions = attentions * attention_mask[:, None, None, :, :]
|
125 |
+
out["attentions"] = attentions
|
126 |
+
if return_contacts:
|
127 |
+
contacts = esm_model.contact_head(toks, attentions)
|
128 |
+
out["contacts"] = contacts
|
129 |
+
representations = out["representations"][33][0].to(device='cpu').detach().numpy()
|
130 |
+
# output is batch x layers x heads x seqlen x seqlen
|
131 |
+
|
132 |
+
logits = out['logits'][0].to(device="cpu").detach().numpy()
|
133 |
+
np.save(
|
134 |
+
f"{out_dir}/{transcript_id}.representations.layer.48.npy",
|
135 |
+
representations,
|
136 |
+
)
|
137 |
+
np.save(
|
138 |
+
f"{out_dir}/{transcript_id}.logits.npy",
|
139 |
+
logits,
|
140 |
+
)
|
141 |
+
if return_contacts:
|
142 |
+
contacts = out['contacts'][0].to(device="cpu").detach().numpy()
|
143 |
+
np.save(
|
144 |
+
f"{out_dir}/{transcript_id}.contacts.npy",
|
145 |
+
contacts,
|
146 |
+
)
|
147 |
+
return
|
148 |
+
|
149 |
+
|
150 |
+
def main(file=None, outdir=None):
|
151 |
+
model, alphabet = esm.pretrained.esm2_t33_650M_UR50D()
|
152 |
+
if torch.cuda.is_available():
|
153 |
+
# manually split the model into 4 GPUs
|
154 |
+
model.embed_tokens.to('cuda:0')
|
155 |
+
for layer_idx, layer in enumerate(model.layers):
|
156 |
+
layer.to(f'cuda:{layer_idx // 9}')
|
157 |
+
model.emb_layer_norm_after.to('cuda:3')
|
158 |
+
model.lm_head.to('cuda:0')
|
159 |
+
model.contact_head.to('cpu')
|
160 |
+
print("Transferred model to GPUs")
|
161 |
+
# model = model.to(f'cuda:{rank}')
|
162 |
+
if file is None:
|
163 |
+
return
|
164 |
+
files = pd.read_csv(file, index_col=0)
|
165 |
+
os.makedirs(outdir, exist_ok=True)
|
166 |
+
for transcript_id, sequence in zip(files['uniprotID'], files['sequence']):
|
167 |
+
precompute_sequence_multiple_gpus(transcript_id, sequence, model,
|
168 |
+
alphabet.get_batch_converter(),
|
169 |
+
outdir)
|
170 |
+
|
171 |
+
|
172 |
+
if __name__ == '__main__':
|
173 |
+
parser = argparse.ArgumentParser()
|
174 |
+
parser.add_argument('--file', type=str, default=None)
|
175 |
+
parser.add_argument('--outdir', type=str, default=None)
|
176 |
+
args = parser.parse_args()
|
177 |
+
main(args.file, args.outdir)
|
fluorescence.tgz
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1089b47959bb0540b338460de27a666dd1788372d3bb499e0b33fa4089c05448
|
3 |
+
size 15124238
|
gMVP.MSA.tgz.part-aa
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b9e251ed2ac02926a7f121b585eef3bb8fe351826c2ebf2410fc93f1a7dcd146
|
3 |
+
size 3105673966
|
preprocess.gene.pfam.R
ADDED
@@ -0,0 +1,83 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
source('/share/vault/Users/gz2294/Pipeline/uniprot.table.add.annotation.R')
|
2 |
+
ALL <- read.csv('ALL.csv', row.names = 1)
|
3 |
+
|
4 |
+
ALL <- uniprot.table.add.annotation.parallel(ALL, "InterPro")
|
5 |
+
# remove glazer
|
6 |
+
ALL <- ALL[ALL$data_source != "glazer",]
|
7 |
+
|
8 |
+
good.uniprotIDs <- data.frame(
|
9 |
+
uniprotID=c("P15056", "P21802", "P07949",
|
10 |
+
"P04637", "Q09428", "O00555",
|
11 |
+
"Q14654", "Q99250", "Q14524"))
|
12 |
+
good.uniprotIDs.df <- data.frame()
|
13 |
+
frac <- 0.8
|
14 |
+
for (seed in 0:4) {
|
15 |
+
split.dir <- paste0('ICC.seed.', seed, '/')
|
16 |
+
dir.create(split.dir)
|
17 |
+
for (i in 1:dim(good.uniprotIDs)[1]) {
|
18 |
+
gene.itan <- ALL[ALL$uniprotID==good.uniprotIDs$uniprotID[i],]
|
19 |
+
# prepare some types
|
20 |
+
pfams <- unique(unlist(strsplit(gene.itan$InterPro,";")))
|
21 |
+
# pick ratio% of variants as training
|
22 |
+
for (pfam in pfams) {
|
23 |
+
set.seed(seed)
|
24 |
+
GO.itan <- ALL[grep(pfam, ALL$InterPro),]
|
25 |
+
GO.itan.training <- GO.itan[!GO.itan$uniprotID %in% gene.itan$uniprotID,]
|
26 |
+
if (dim(GO.itan.training)[1] > 0) {
|
27 |
+
GO.itan.training$split <- 'train'
|
28 |
+
}
|
29 |
+
# select only the data in domain as train/test
|
30 |
+
gene.itan.domain <- gene.itan[grep(pfam, gene.itan$InterPro),]
|
31 |
+
# random select testing and validation
|
32 |
+
# select equal amount of gof and lof for testing
|
33 |
+
gof.training <- sample(which(gene.itan.domain$score==1), size = floor(sum(gene.itan.domain$score==1)*frac))
|
34 |
+
lof.training <- sample(which(gene.itan.domain$score==-1), size = floor(sum(gene.itan.domain$score==-1)*frac))
|
35 |
+
# select equal amount of gof and lof for validation
|
36 |
+
if (length(gof.training) > 0 & length(lof.training) > 0) {
|
37 |
+
gene.itan.domain.training <- gene.itan.domain[c(gof.training, lof.training),]
|
38 |
+
gene.itan.domain.training$split <- 'train'
|
39 |
+
gof.val <- sample(which(gene.itan.domain.training$score==1), size = floor(sum(gene.itan.domain$score==1)*(1-frac)))
|
40 |
+
lof.val <- sample(which(gene.itan.domain.training$score==-1), size = floor(sum(gene.itan.domain$score==-1)*(1-frac)))
|
41 |
+
gene.itan.domain.training$split[c(gof.val, lof.val)] <- 'val'
|
42 |
+
|
43 |
+
GO.itan.testing <- gene.itan.domain[-c(gof.training, lof.training),]
|
44 |
+
if (dim(GO.itan.testing)[1] > 0) {
|
45 |
+
# first save the gene itself
|
46 |
+
dir.create(paste0(split.dir, good.uniprotIDs$uniprotID[i], '.', pfam, ".", "self"))
|
47 |
+
write.csv(gene.itan.domain.training[sample(dim(gene.itan.domain.training)[1]),], paste0(split.dir, good.uniprotIDs$uniprotID[i], ".", pfam, ".self", "/training.csv"))
|
48 |
+
write.csv(GO.itan.testing, paste0(split.dir, good.uniprotIDs$uniprotID[i], ".", pfam, ".self", "/testing.csv"))
|
49 |
+
good.uniprotIDs.df <- rbind(good.uniprotIDs.df,
|
50 |
+
data.frame(dataID=paste0(good.uniprotIDs$uniprotID[i], ".", pfam, ".self"),
|
51 |
+
uniprotID=paste0(good.uniprotIDs$uniprotID[i]),
|
52 |
+
pfam=pfam,
|
53 |
+
gof.training=sum(gene.itan.domain.training$score==1),
|
54 |
+
lof.training=sum(gene.itan.domain.training$score==-1),
|
55 |
+
gof.testing=sum(GO.itan.testing$score==1),
|
56 |
+
lof.testing=sum(GO.itan.testing$score==-1),
|
57 |
+
seed=seed))
|
58 |
+
# next concatenate and shuffle
|
59 |
+
GO.itan.training <- dplyr::bind_rows(gene.itan.domain.training, GO.itan.training)
|
60 |
+
GO.itan.training <- GO.itan.training[sample(dim(GO.itan.training)[1]),]
|
61 |
+
GO.itan.testing <- GO.itan.testing[sample(dim(GO.itan.testing)[1]),]
|
62 |
+
# save the training files
|
63 |
+
dir.create(paste0(split.dir, good.uniprotIDs$uniprotID[i], '.', pfam, ".", pfam))
|
64 |
+
write.csv(GO.itan.training, paste0(split.dir, good.uniprotIDs$uniprotID[i], ".", pfam, ".", pfam, "/training.csv"))
|
65 |
+
write.csv(GO.itan.testing, paste0(split.dir, good.uniprotIDs$uniprotID[i], ".", pfam, ".", pfam, "/testing.csv"))
|
66 |
+
|
67 |
+
good.uniprotIDs.df <- rbind(good.uniprotIDs.df,
|
68 |
+
data.frame(dataID=paste0(good.uniprotIDs$uniprotID[i], ".", pfam, ".", pfam),
|
69 |
+
uniprotID=paste0(good.uniprotIDs$uniprotID[i]),
|
70 |
+
pfam=pfam,
|
71 |
+
gof.training=sum(GO.itan.training$score==1),
|
72 |
+
lof.training=sum(GO.itan.training$score==-1),
|
73 |
+
gof.testing=sum(GO.itan.testing$score==1),
|
74 |
+
lof.testing=sum(GO.itan.testing$score==-1),
|
75 |
+
seed=seed))
|
76 |
+
}
|
77 |
+
}
|
78 |
+
}
|
79 |
+
}
|
80 |
+
}
|
81 |
+
entry.list <- read.delim('/share/vault/Users/gz2294/Data/Protein/InterPro/entry.list')
|
82 |
+
good.uniprotIDs.df$name <- entry.list$ENTRY_NAME[match(good.uniprotIDs.df$pfam, entry.list$ENTRY_AC)]
|
83 |
+
write.csv(good.uniprotIDs.df, file = "good.uniprotIDs.InterPros.csv")
|
preprocess.separate.gene.R
ADDED
@@ -0,0 +1,63 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
source('../analysis/prepare.biochem.R')
|
2 |
+
ALL <- read.csv('../analysis/figs/ALL.csv', row.names = 1)
|
3 |
+
ALL$score.label <- NULL
|
4 |
+
gof.lof.df <- data.frame(uniprotIDs=as.character(unique(unlist(strsplit(ALL$uniprotID, split = ";")))), gof=0, lof=0)
|
5 |
+
for (i in 1:dim(gof.lof.df)[1]) {
|
6 |
+
gene <- ALL[grep(gof.lof.df$uniprotIDs[i], ALL$uniprotID),]
|
7 |
+
gof.lof.df$gof[i] <- sum(gene$score==1)
|
8 |
+
gof.lof.df$lof[i] <- sum(gene$score==-1)
|
9 |
+
}
|
10 |
+
|
11 |
+
good.uniprotIDs <- gof.lof.df[gof.lof.df$gof >= 15 & gof.lof.df$lof >= 15, ]
|
12 |
+
|
13 |
+
# split by random
|
14 |
+
ratio <- 0.8
|
15 |
+
good.uniprotIDs$gof.training <- NA
|
16 |
+
good.uniprotIDs$gof.testing <- NA
|
17 |
+
good.uniprotIDs$lof.training <- NA
|
18 |
+
good.uniprotIDs$lof.testing <- NA
|
19 |
+
for (seed in 0:4) {
|
20 |
+
split.dir <- paste0('ICC.seed.', seed, '/')
|
21 |
+
dir.create(split.dir)
|
22 |
+
for (i in 1:dim(good.uniprotIDs)[1]) {
|
23 |
+
gene <- ALL[grep(good.uniprotIDs$uniprotIDs[i], ALL$uniprotID),]
|
24 |
+
gene.gof <- gene[gene$score == 1,]
|
25 |
+
gene.lof <- gene[gene$score == -1,]
|
26 |
+
set.seed(seed)
|
27 |
+
# pick ratio% of variants as training
|
28 |
+
if (floor(dim(gene.gof)[1] * ratio) > 0 &
|
29 |
+
floor(dim(gene.lof)[1] * ratio) > 0) {
|
30 |
+
gene.gof.training <- sample(dim(gene.gof)[1], floor(dim(gene.gof)[1] * ratio))
|
31 |
+
gene.lof.training <- sample(dim(gene.lof)[1], floor(dim(gene.lof)[1] * ratio))
|
32 |
+
gene.training <- rbind(gene.gof[gene.gof.training,], gene.lof[gene.lof.training,])
|
33 |
+
gene.testing <- rbind(gene.gof[-gene.gof.training,], gene.lof[-gene.lof.training,])
|
34 |
+
|
35 |
+
gene.training <- gene.training[sample(dim(gene.training)[1]),]
|
36 |
+
gene.testing <- gene.testing[sample(dim(gene.testing)[1]),]
|
37 |
+
|
38 |
+
dir.create(paste0(split.dir, good.uniprotIDs$uniprotIDs[i]))
|
39 |
+
|
40 |
+
uid <- good.uniprotIDs$uniprotIDs[i]
|
41 |
+
if (uid == 'Q14524') {
|
42 |
+
uid <- 'Q14524.clean'
|
43 |
+
}
|
44 |
+
|
45 |
+
if (!file.exists(paste0(split.dir, uid, "/training.csv")) | uid=='Q99250') {
|
46 |
+
print(uid)
|
47 |
+
write.csv(gene.training, paste0(split.dir, uid, "/training.csv"))
|
48 |
+
}
|
49 |
+
if (!file.exists(paste0(split.dir, uid, "/testing.csv")) | uid=='Q99250') {
|
50 |
+
print(uid)
|
51 |
+
write.csv(gene.testing, paste0(split.dir, uid, "/testing.csv"))
|
52 |
+
}
|
53 |
+
|
54 |
+
good.uniprotIDs$gof.training[i] <- sum(tmp.training$score==1)
|
55 |
+
good.uniprotIDs$lof.training[i] <- sum(tmp.training$score==-1)
|
56 |
+
|
57 |
+
good.uniprotIDs$gof.testing[i] <- sum(tmp.testing$score==1)
|
58 |
+
good.uniprotIDs$lof.testing[i] <- sum(tmp.testing$score==-1)
|
59 |
+
|
60 |
+
}
|
61 |
+
}
|
62 |
+
}
|
63 |
+
write.csv(good.uniprotIDs, file = "sup.data.1.csv")
|
preprocess.separate.gene.itan.R
ADDED
@@ -0,0 +1,258 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# sum the variant number of uniprotIDs in the dataset
|
2 |
+
library(ggplot2)
|
3 |
+
source('~/Pipeline/uniprot.table.add.annotation.R')
|
4 |
+
ALL <- read.csv('ALL.csv', row.names = 1)
|
5 |
+
ALL$score[ALL$score == 0] <- -1
|
6 |
+
# remove glazer
|
7 |
+
ALL <- ALL[ALL$data_source != "glazer",]
|
8 |
+
ALL$score.label <- NULL
|
9 |
+
good.uniprotIDs <- data.frame(
|
10 |
+
uniprotIDs=c("P15056", "P21802", "P07949",
|
11 |
+
"P04637", "Q09428", "O00555",
|
12 |
+
"Q14654", "Q99250"))
|
13 |
+
|
14 |
+
core.columns <- c("uniprotID", "ref", "alt", "pos.orig", "ENST", "wt.orig", "score")
|
15 |
+
for (i in 1:dim(good.uniprotIDs)[1]) {
|
16 |
+
GO <- ALL[grep(good.uniprotIDs$uniprotIDs[i], ALL$uniprotID),]
|
17 |
+
print(table(GO$score[!grepl('Itan', GO$data_source)]))
|
18 |
+
}
|
19 |
+
|
20 |
+
itan.aucs.1 <- c()
|
21 |
+
itan.aucs.2 <- c()
|
22 |
+
# split by random, add beni
|
23 |
+
ratio <- 0.25
|
24 |
+
good.uniprotIDs$gof.training <- NA
|
25 |
+
good.uniprotIDs$gof.testing <- NA
|
26 |
+
good.uniprotIDs$lof.training <- NA
|
27 |
+
good.uniprotIDs$lof.testing <- NA
|
28 |
+
for (seed in 0:4) {
|
29 |
+
split.dir <- paste0('ICC.seed.', seed, '/')
|
30 |
+
dir.create(split.dir)
|
31 |
+
for (i in 1:dim(good.uniprotIDs)[1]) {
|
32 |
+
GO <- ALL[grep(good.uniprotIDs$uniprotIDs[i], ALL$uniprotID),]
|
33 |
+
GO.gof <- GO[GO$score == 1,]
|
34 |
+
GO.lof <- GO[GO$score == -1,]
|
35 |
+
# split variants from GO and other
|
36 |
+
GO.non.itan.gof <- GO.gof[!grepl('Itan', GO.gof$data_source),]
|
37 |
+
GO.non.itan.lof <- GO.lof[!grepl('Itan', GO.lof$data_source),]
|
38 |
+
GO.itan.gof <- GO.gof[grepl('Itan', GO.gof$data_source),]
|
39 |
+
GO.itan.lof <- GO.lof[grepl('Itan', GO.lof$data_source),]
|
40 |
+
|
41 |
+
set.seed(seed)
|
42 |
+
# pick ratio% of variants as training
|
43 |
+
if (floor(dim(GO.gof)[1] * ratio) > 0 &
|
44 |
+
floor(dim(GO.lof)[1] * ratio) > 0) {
|
45 |
+
GO.gof.testing <- sample(dim(GO.non.itan.gof)[1], min(dim(GO.non.itan.gof)[1], floor(dim(GO.gof)[1] * ratio)))
|
46 |
+
GO.lof.testing <- sample(dim(GO.non.itan.lof)[1], min(dim(GO.non.itan.lof)[1], floor(dim(GO.lof)[1] * ratio)))
|
47 |
+
GO.training <- rbind(GO.itan.gof,
|
48 |
+
GO.itan.lof,
|
49 |
+
GO.non.itan.gof[-GO.gof.testing,],
|
50 |
+
GO.non.itan.lof[-GO.lof.testing,])
|
51 |
+
GO.testing <- rbind(GO.non.itan.gof[GO.gof.testing,],
|
52 |
+
GO.non.itan.lof[GO.lof.testing,])
|
53 |
+
|
54 |
+
GO.training <- GO.training[sample(dim(GO.training)[1]),]
|
55 |
+
GO.testing <- GO.testing[sample(dim(GO.testing)[1]),]
|
56 |
+
# beni.training.beni <- beni.training[beni.training$score==0,]
|
57 |
+
if (sum(is.na(GO.testing$itan.beni)) > 0) {
|
58 |
+
print(good.uniprotIDs$uniprotIDs[i])
|
59 |
+
print(seed)
|
60 |
+
}
|
61 |
+
if (dim(GO.testing)[1] > 0) {
|
62 |
+
# print(paste0(good.uniprotIDs$uniprotIDs[i], ":", seed))
|
63 |
+
itan.aucs.1 <- c(itan.aucs.1, plot.AUC(GO.testing$score, 1-GO.testing$itan.gof)$auc)
|
64 |
+
itan.aucs.2 <- c(itan.aucs.2, plot.AUC(GO.testing$score, GO.testing$itan.lof/GO.testing$itan.gof)$auc)
|
65 |
+
} else {
|
66 |
+
itan.aucs.1 <- c(itan.aucs.1, NA)
|
67 |
+
itan.aucs.2 <- c(itan.aucs.2, NA)
|
68 |
+
}
|
69 |
+
dir.create(paste0(split.dir, good.uniprotIDs$uniprotIDs[i], '.itan.split'))
|
70 |
+
write.csv(GO.training, paste0(split.dir, good.uniprotIDs$uniprotIDs[i], ".itan.split/training.csv"))
|
71 |
+
# write.csv(beni.training.beni, paste0(split.dir, good.uniprotIDs$uniprotIDs[i], ".chps/beni.csv"))
|
72 |
+
write.csv(GO.testing, paste0(split.dir, good.uniprotIDs$uniprotIDs[i], ".itan.split/testing.csv"))
|
73 |
+
|
74 |
+
good.uniprotIDs$gof.training[i] <- sum(GO.training$score==1)
|
75 |
+
good.uniprotIDs$lof.training[i] <- sum(GO.training$score==-1)
|
76 |
+
good.uniprotIDs$beni.training[i] <- sum(GO.training$score==0)
|
77 |
+
good.uniprotIDs$patho.training[i] <- sum(GO.training$score==3)
|
78 |
+
|
79 |
+
good.uniprotIDs$gof.testing[i] <- sum(GO.testing$score==1)
|
80 |
+
good.uniprotIDs$lof.testing[i] <- sum(GO.testing$score==-1)
|
81 |
+
good.uniprotIDs$beni.testing[i] <- sum(GO.testing$score==0)
|
82 |
+
good.uniprotIDs$patho.testing[i] <- sum(GO.testing$score==3)
|
83 |
+
|
84 |
+
}
|
85 |
+
}
|
86 |
+
}
|
87 |
+
write.csv(good.uniprotIDs, file = "good.uniprotIDs.itan.csv")
|
88 |
+
|
89 |
+
# # split by random, add beni
|
90 |
+
ratio <- 0.25
|
91 |
+
# good.uniprotIDs$gof.training <- NA
|
92 |
+
# good.uniprotIDs$gof.testing <- NA
|
93 |
+
# good.uniprotIDs$lof.training <- NA
|
94 |
+
# good.uniprotIDs$lof.testing <- NA
|
95 |
+
# source('~/Pipeline/AUROC.R')
|
96 |
+
#
|
97 |
+
# for (seed in 0:4) {
|
98 |
+
# if (seed == 0) {
|
99 |
+
# split.dir <- paste0('pfams.add.beni.', 0.8, '/')
|
100 |
+
# } else {
|
101 |
+
# split.dir <- paste0('pfams.add.beni.', 0.8, '.seed.', seed, '/')
|
102 |
+
# }
|
103 |
+
# dir.create(split.dir)
|
104 |
+
# for (i in 1:dim(good.uniprotIDs)[1]) {
|
105 |
+
# GO <- ALL[grep(good.uniprotIDs$uniprotIDs[i], ALL$uniprotID),]
|
106 |
+
# GO.gof <- GO[GO$score == 1,]
|
107 |
+
# GO.lof <- GO[GO$score == -1,]
|
108 |
+
# # split variants from GO and other
|
109 |
+
# non.itan.gof.idx <- which(GO.gof$data_source != 'Itan' & !is.na(GO.gof$itan.beni))
|
110 |
+
# non.itan.lof.idx <- which(GO.lof$data_source != 'Itan' & !is.na(GO.lof$itan.beni))
|
111 |
+
#
|
112 |
+
# GO.non.itan.gof <- GO.gof[non.itan.gof.idx,]
|
113 |
+
# GO.non.itan.lof <- GO.lof[non.itan.lof.idx,]
|
114 |
+
# GO.itan.gof <- GO.gof[-non.itan.gof.idx,]
|
115 |
+
# GO.itan.lof <- GO.lof[-non.itan.lof.idx,]
|
116 |
+
#
|
117 |
+
# set.seed(seed)
|
118 |
+
# # pick ratio% of variants as training
|
119 |
+
# if (floor(dim(GO.gof)[1] * ratio) > 0 &
|
120 |
+
# floor(dim(GO.lof)[1] * ratio) > 0) {
|
121 |
+
# GO.gof.testing <- sample(dim(GO.non.itan.gof)[1], min(dim(GO.non.itan.gof)[1], floor(dim(GO.gof)[1] * ratio)))
|
122 |
+
# GO.lof.testing <- sample(dim(GO.non.itan.lof)[1], min(dim(GO.non.itan.lof)[1], floor(dim(GO.lof)[1] * ratio)))
|
123 |
+
# GO.training <- rbind(GO.itan.gof,
|
124 |
+
# GO.itan.lof,
|
125 |
+
# GO.non.itan.gof[-GO.gof.testing,],
|
126 |
+
# GO.non.itan.lof[-GO.lof.testing,])
|
127 |
+
# GO.testing <- rbind(GO.non.itan.gof[GO.gof.testing,],
|
128 |
+
# GO.non.itan.lof[GO.lof.testing,])
|
129 |
+
#
|
130 |
+
# GO.training <- GO.training[sample(dim(GO.training)[1]),]
|
131 |
+
# GO.testing <- GO.testing[sample(dim(GO.testing)[1]),]
|
132 |
+
# # beni.training.beni <- beni.training[beni.training$score==0,]
|
133 |
+
# if (dim(GO.testing)[1] > 0) {
|
134 |
+
# print(paste0(good.uniprotIDs$uniprotIDs[i], ":", seed))
|
135 |
+
# itan.aucs.1 <- c(itan.aucs.1, plot.AUC(GO.testing$score, GO.testing$itan.gof)$auc)
|
136 |
+
# itan.aucs.2 <- c(itan.aucs.2, plot.AUC(GO.testing$score, GO.testing$itan.gof/GO.testing$itan.lof)$auc)
|
137 |
+
# } else {
|
138 |
+
# itan.aucs.1 <- c(itan.aucs.1, NA)
|
139 |
+
# itan.aucs.2 <- c(itan.aucs.2, NA)
|
140 |
+
# }
|
141 |
+
# dir.create(paste0(split.dir, good.uniprotIDs$uniprotIDs[i], '.itan.split.clean'))
|
142 |
+
# write.csv(GO.training, paste0(split.dir, good.uniprotIDs$uniprotIDs[i], ".itan.split.clean/training.csv"))
|
143 |
+
# # write.csv(beni.training.beni, paste0(split.dir, good.uniprotIDs$uniprotIDs[i], ".chps/beni.csv"))
|
144 |
+
# write.csv(GO.testing, paste0(split.dir, good.uniprotIDs$uniprotIDs[i], ".itan.split.clean/testing.csv"))
|
145 |
+
#
|
146 |
+
# good.uniprotIDs$gof.training[i] <- sum(GO.training$score==1)
|
147 |
+
# good.uniprotIDs$lof.training[i] <- sum(GO.training$score==-1)
|
148 |
+
# good.uniprotIDs$beni.training[i] <- sum(GO.training$score==0)
|
149 |
+
# good.uniprotIDs$patho.training[i] <- sum(GO.training$score==3)
|
150 |
+
#
|
151 |
+
# good.uniprotIDs$gof.testing[i] <- sum(GO.testing$score==1)
|
152 |
+
# good.uniprotIDs$lof.testing[i] <- sum(GO.testing$score==-1)
|
153 |
+
# good.uniprotIDs$beni.testing[i] <- sum(GO.testing$score==0)
|
154 |
+
# good.uniprotIDs$patho.testing[i] <- sum(GO.testing$score==3)
|
155 |
+
#
|
156 |
+
# }
|
157 |
+
# }
|
158 |
+
# }
|
159 |
+
# write.csv(good.uniprotIDs, file = "good.uniprotIDs.itan.clean.csv")
|
160 |
+
|
161 |
+
# for SCN5A, remove glazer
|
162 |
+
for (seed in 0:4) {
|
163 |
+
if (seed == 0) {
|
164 |
+
split.dir <- paste0('pfams.add.beni.', 0.8, '/')
|
165 |
+
} else {
|
166 |
+
split.dir <- paste0('pfams.add.beni.', 0.8, '.seed.', seed, '/')
|
167 |
+
}
|
168 |
+
dir.create(split.dir)
|
169 |
+
GO <- ALL[grep('Q14524', ALL$uniprotID),]
|
170 |
+
GO <- GO[GO$data_source != 'glazer',]
|
171 |
+
GO.gof <- GO[GO$score == 1,]
|
172 |
+
GO.lof <- GO[GO$score == -1,]
|
173 |
+
# split variants from GO and other
|
174 |
+
non.itan.gof.idx <- which(!grepl('Itan', GO.gof$data_source) & !is.na(GO.gof$itan.beni))
|
175 |
+
non.itan.lof.idx <- which(!grepl('Itan', GO.lof$data_source) & !is.na(GO.lof$itan.beni))
|
176 |
+
|
177 |
+
GO.non.itan.gof <- GO.gof[non.itan.gof.idx,]
|
178 |
+
GO.non.itan.lof <- GO.lof[non.itan.lof.idx,]
|
179 |
+
GO.itan.gof <- GO.gof[-non.itan.gof.idx,]
|
180 |
+
GO.itan.lof <- GO.lof[-non.itan.lof.idx,]
|
181 |
+
|
182 |
+
set.seed(seed)
|
183 |
+
# pick ratio% of variants as training
|
184 |
+
if (floor(dim(GO.gof)[1] * ratio) > 0 &
|
185 |
+
floor(dim(GO.lof)[1] * ratio) > 0) {
|
186 |
+
GO.gof.testing <- sample(dim(GO.non.itan.gof)[1], min(dim(GO.non.itan.gof)[1], floor(dim(GO.gof)[1] * ratio)))
|
187 |
+
GO.lof.testing <- sample(dim(GO.non.itan.lof)[1], min(dim(GO.non.itan.lof)[1], floor(dim(GO.lof)[1] * ratio)))
|
188 |
+
GO.training <- rbind(GO.itan.gof,
|
189 |
+
GO.itan.lof,
|
190 |
+
GO.non.itan.gof[-GO.gof.testing,],
|
191 |
+
GO.non.itan.lof[-GO.lof.testing,])
|
192 |
+
GO.testing <- rbind(GO.non.itan.gof[GO.gof.testing,],
|
193 |
+
GO.non.itan.lof[GO.lof.testing,])
|
194 |
+
|
195 |
+
GO.training <- GO.training[sample(dim(GO.training)[1]),]
|
196 |
+
GO.testing <- GO.testing[sample(dim(GO.testing)[1]),]
|
197 |
+
# beni.training.beni <- beni.training[beni.training$score==0,]
|
198 |
+
if (dim(GO.testing)[1] > 0) {
|
199 |
+
# print(paste0(good.uniprotIDs$uniprotIDs[i], ":", seed))
|
200 |
+
itan.aucs.1 <- c(itan.aucs.1, plot.AUC(GO.testing$score, GO.testing$itan.gof)$auc)
|
201 |
+
itan.aucs.2 <- c(itan.aucs.2, plot.AUC(GO.testing$score, GO.testing$itan.gof/GO.testing$itan.lof)$auc)
|
202 |
+
} else {
|
203 |
+
itan.aucs.1 <- c(itan.aucs.1, NA)
|
204 |
+
itan.aucs.2 <- c(itan.aucs.2, NA)
|
205 |
+
}
|
206 |
+
dir.create(paste0(split.dir, 'Q14524', '.clean.itan.split'))
|
207 |
+
write.csv(GO.training, paste0(split.dir, 'Q14524', ".clean.itan.split/training.csv"))
|
208 |
+
# write.csv(beni.training.beni, paste0(split.dir, 'Q14524', ".chps/beni.csv"))
|
209 |
+
write.csv(GO.testing, paste0(split.dir, 'Q14524', ".clean.itan.split/testing.csv"))
|
210 |
+
}
|
211 |
+
}
|
212 |
+
|
213 |
+
# for SCN5A, remove glazer, don't do itan split, just split
|
214 |
+
ratio <- 0.8
|
215 |
+
for (seed in 0:4) {
|
216 |
+
if (seed == 0) {
|
217 |
+
split.dir <- paste0('pfams.add.beni.', 0.8, '/')
|
218 |
+
} else {
|
219 |
+
split.dir <- paste0('pfams.add.beni.', 0.8, '.seed.', seed, '/')
|
220 |
+
}
|
221 |
+
dir.create(split.dir)
|
222 |
+
GO <- ALL[grep('Q14524', ALL$uniprotID),]
|
223 |
+
GO.itan <- GO[GO$data_source != 'glazer',]
|
224 |
+
GO.itan.gof <- GO.itan[GO.itan$score == 1,]
|
225 |
+
GO.itan.lof <- GO.itan[GO.itan$score == -1,]
|
226 |
+
set.seed(seed)
|
227 |
+
# pick ratio% of variants as training
|
228 |
+
if (floor(dim(GO.itan.gof)[1] * ratio) > 0 &
|
229 |
+
floor(dim(GO.itan.lof)[1] * ratio) > 0) {
|
230 |
+
GO.itan.gof.training <- sample(dim(GO.itan.gof)[1], floor(dim(GO.itan.gof)[1] * ratio))
|
231 |
+
GO.itan.lof.training <- sample(dim(GO.itan.lof)[1], floor(dim(GO.itan.lof)[1] * ratio))
|
232 |
+
GO.itan.training <- rbind(GO.itan.gof[GO.itan.gof.training,],
|
233 |
+
GO.itan.lof[GO.itan.lof.training,])
|
234 |
+
GO.itan.testing <- rbind(GO.itan.gof[-GO.itan.gof.training,],
|
235 |
+
GO.itan.lof[-GO.itan.lof.training,])
|
236 |
+
GO.itan.training <- GO.itan.training[sample(dim(GO.itan.training)[1]),]
|
237 |
+
GO.itan.testing <- GO.itan.testing[sample(dim(GO.itan.testing)[1]),]
|
238 |
+
|
239 |
+
dir.create(paste0(split.dir, 'Q14524', '.clean'))
|
240 |
+
write.csv(GO.itan.training, paste0(split.dir, 'Q14524', ".clean/training.csv"))
|
241 |
+
# write.csv(beni.training.beni, paste0(split.dir, 'Q14524', ".chps/beni.csv"))
|
242 |
+
write.csv(GO.itan.testing, paste0(split.dir, 'Q14524', ".clean/testing.csv"))
|
243 |
+
}
|
244 |
+
}
|
245 |
+
|
246 |
+
# # for FGFR2, further clean data, only use CKB validated as testing
|
247 |
+
# fgfr2.check <- read.csv('fgfr2.check.csv')
|
248 |
+
# fgfr2.check$uniprotID <- 'P21802'
|
249 |
+
# source('/share/vault/Users/gz2294/Pipeline/dnv.table.to.uniprot.R')
|
250 |
+
# fgfr2.check <- dnv.table.to.uniprot.by.af2.uniprotID.parallel(fgfr2.check, 'aaChg', 'score', 'uniprotID', 'aaChg')
|
251 |
+
# source('/share/vault/Users/gz2294/Pipeline/uniprot.table.add.annotation.R')
|
252 |
+
# fgfr2.check <- uniprot.table.add.annotation.parallel(fgfr2.check$result.noNA, 'Itan')
|
253 |
+
#
|
254 |
+
|
255 |
+
|
256 |
+
|
257 |
+
|
258 |
+
|
preprocess.separate.gene.subset.R
ADDED
@@ -0,0 +1,52 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
good.uniprotIDs <- c('P15056', 'P21802', 'P07949', 'P04637', 'Q09428', 'O00555', 'Q14654', 'Q99250', 'Q14524.clean')
|
2 |
+
# split by random, add beni
|
3 |
+
good.uniprotIDs.df <- data.frame()
|
4 |
+
for (seed in 0:4) {
|
5 |
+
split.dir <- paste0('ICC.seed.', seed, '/')
|
6 |
+
ratios <- c(1, 2, 4, 6)
|
7 |
+
dir.create(split.dir)
|
8 |
+
for (i in 1:length(good.uniprotIDs)) {
|
9 |
+
GO.itan.training <- read.csv(paste0('ICC.seed.', 0, '/', good.uniprotIDs[i], '/training.csv'))
|
10 |
+
|
11 |
+
GO.itan.testing <- read.csv(paste0('ICC.seed.', 0 ,'/', good.uniprotIDs[i], '/testing.csv'))
|
12 |
+
GO.itan.gof <- GO.itan.training[GO.itan.training$score==1,]
|
13 |
+
GO.itan.lof <- GO.itan.training[GO.itan.training$score==-1,]
|
14 |
+
set.seed(seed)
|
15 |
+
# pick ratio% of variants as training
|
16 |
+
for (ratio in ratios) {
|
17 |
+
if (floor(dim(GO.itan.gof)[1] * ratio/8) > 0 &
|
18 |
+
floor(dim(GO.itan.lof)[1] * ratio/8) > 0) {
|
19 |
+
GO.itan.gof.training <- sample(dim(GO.itan.gof)[1], ceiling(dim(GO.itan.gof)[1] * ratio/8))
|
20 |
+
GO.itan.lof.training <- sample(dim(GO.itan.lof)[1], ceiling(dim(GO.itan.lof)[1] * ratio/8))
|
21 |
+
GO.itan.training <- rbind(GO.itan.gof[GO.itan.gof.training,],
|
22 |
+
GO.itan.lof[GO.itan.lof.training,])
|
23 |
+
GO.itan.training$split <- 'train'
|
24 |
+
|
25 |
+
GO.itan.training <- GO.itan.training[sample(dim(GO.itan.training)[1]),]
|
26 |
+
GO.itan.testing <- GO.itan.testing[sample(dim(GO.itan.testing)[1]),]
|
27 |
+
|
28 |
+
dir.create(paste0(split.dir, good.uniprotIDs[i], '.subset2.', ratio))
|
29 |
+
if (!file.exists(paste0(split.dir, good.uniprotIDs[i], '.subset2.', ratio, "/training.csv"))) {
|
30 |
+
print(good.uniprotIDs[i])
|
31 |
+
write.csv(GO.itan.training, paste0(split.dir, good.uniprotIDs[i], '.subset2.', ratio, "/training.csv"))
|
32 |
+
}
|
33 |
+
if (!file.exists(paste0(split.dir, good.uniprotIDs[i], '.subset2.', ratio, "/testing.csv"))) {
|
34 |
+
print(good.uniprotIDs[i])
|
35 |
+
write.csv(GO.itan.testing, paste0(split.dir, good.uniprotIDs[i], '.subset2.', ratio, "/testing.csv"))
|
36 |
+
}
|
37 |
+
good.uniprotIDs.df <- rbind(good.uniprotIDs.df,
|
38 |
+
data.frame(gene=good.uniprotIDs[i],
|
39 |
+
ratio=ratio,
|
40 |
+
seed=seed,
|
41 |
+
gof.training = sum(GO.itan.training$score==1 & GO.itan.training$split=='train'),
|
42 |
+
lof.training = sum(GO.itan.training$score==-1 & GO.itan.training$split=='train'),
|
43 |
+
gof.val = sum(GO.itan.training$score==1 & GO.itan.training$split=='val'),
|
44 |
+
lof.val = sum(GO.itan.training$score==-1 & GO.itan.training$split=='val'),
|
45 |
+
gof.testing = sum(GO.itan.testing$score==1),
|
46 |
+
lof.testing = sum(GO.itan.testing$score==-1)))
|
47 |
+
}
|
48 |
+
}
|
49 |
+
}
|
50 |
+
}
|
51 |
+
|
52 |
+
write.csv(good.uniprotIDs.df, file = "good.uniprotIDs.subsets.csv")
|
pretrain.tgz.part-aa
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3d4f19e4fca0765d0ede2c93de380d0134c14c906ce3b75232893727c1ba0f9b
|
3 |
+
size 894753652
|
pretrain/testing.csv.gz
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4ce066487c65d6a810759ed7087960959bc860e45409cdb2e8b946bdb37173f1
|
3 |
+
size 1138034
|
pretrain/training.0.csv.gz
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4d1bfe529668cf8706daae5b69b602775add2787b7f88ad367810e3d08c97b53
|
3 |
+
size 24972339
|
pretrain/training.1.csv.gz
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f4918e5ba8c2e4ccb27505a6517b32b228ccf4eacce4d4052c7562c80ce90245
|
3 |
+
size 22754591
|
pretrain/training.2.csv.gz
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:bfcc1224356ae0e684d1d8f64f4b24ad3d78b552f158f16e009bf2e30c7681e7
|
3 |
+
size 22809905
|
pretrain/training.3.csv.gz
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:dec4591c575c60228349b2eac512afb67513bb5d7e78a4dc22f401192bb1b84c
|
3 |
+
size 22286420
|
pretrain/training.csv.gz
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:dc50e2d1946267babc3ccb267374d13196c1a145ff58476b5d33f9968e80f7da
|
3 |
+
size 93760937
|
ptm.small.csv.gz
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c1b4d1e38fe5fe797dd5189751869335e6ea3f2dfc6adeda91df3fa14b835184
|
3 |
+
size 2419426
|