#!/bin/bash # # Finetunes the ESM-1b Transformer model on supervised data. # #SBATCH --cluster= #SBATCH --partition= #SBATCH --account= #SBATCH --job-name=esm_finetune #SBATCH --gres=gpu:1 # Number of GPU(s) per node. #SBATCH --cpus-per-task=2 # CPU cores/threads #SBATCH --mem=32000M # memory per node #SBATCH --time=0-24:00 # Max time (DD-HH:MM) #SBATCH --ntasks=1 # Only set to >1 if you want to use multi-threading export OMP_NUM_THREADS=$SLURM_CPUS_PER_TASK dataset=$1 runid=$2 epochs=$3 n_train=$4 seed=$5 model_name="esm1b" init_model="/mnt/esm_weights/${model_name}.pt" kwargs=$6 python src/esm_finetune.py data_esm/${dataset}/data.csv \ data_esm/${dataset}/wt.fasta \ /mnt/inference/${dataset}/esm_finetune/${runid} \ --epochs $epochs --n_train $n_train --toks_per_batch 512 \ --model_location $init_model --seed $seed \ $kwargs