import os import numpy as np import pandas as pd from sklearn.linear_model import Ridge, Lasso, LinearRegression from utils import seqs_to_onehot, read_fasta from predictors.base_predictors import BaseRegressionPredictor class HMMPredictor(BaseRegressionPredictor): """HMM likelihood as features in regression.""" def __init__(self, dataset_name, model_name='uniref100_b0.5', reg_coef=1e-8, **kwargs): super(HMMPredictor, self).__init__(dataset_name, reg_coef=reg_coef, **kwargs) seqs_path = os.path.join('data', dataset_name, 'seqs.fasta') hmm_seqs = read_fasta(seqs_path) id2seq = pd.Series(index=np.arange(len(hmm_seqs)), data=hmm_seqs, name='seq') hmm_data_path = os.path.join('inference', dataset_name, 'hmm', f'{model_name}.csv') ll = pd.read_csv(hmm_data_path)[['target', 'score_full']] ll['id'] = ll['target'].apply(lambda x: int(x.replace('id_', ''))) ll = ll.join(id2seq, on='id', how='left') self.seq2score_dict = dict(zip(ll.seq, ll.score_full)) def seq2score(self, seqs): scores = np.array([self.seq2score_dict.get(s, 0.0) for s in seqs]) return scores def seq2feat(self, seqs): return self.seq2score(seqs)[:, None] def predict_unsupervised(self, seqs): return self.seq2score(seqs) class BLOSUM62HMMPredictor(HMMPredictor): def __init__(self, dataset_name, reg_coef=1e-8, **kwargs): super(BLOSUM62Predictor, self).__init__(dataset_name, model_name='blosum62', reg_coef=reg_coef, **kwargs)