arnocandel
commited on
Commit
•
04cb502
1
Parent(s):
7c142cb
Update README.md
Browse files
README.md
CHANGED
@@ -16,12 +16,12 @@ datasets:
|
|
16 |
# h2oGPT Model Card
|
17 |
## Summary
|
18 |
|
19 |
-
H2O.ai's `h2ogpt-oig-oasst1-256-
|
20 |
|
21 |
- Base model: [EleutherAI/pythia-6.9b](https://huggingface.co/EleutherAI/pythia-6.9b)
|
22 |
- Fine-tuning dataset: [h2oai/h2ogpt-oig-oasst1-instruct-cleaned-v1](https://huggingface.co/datasets/h2oai/h2ogpt-oig-oasst1-instruct-cleaned-v1)
|
23 |
- Data-prep and fine-tuning code: [H2O.ai Github](https://github.com/h2oai/h2ogpt)
|
24 |
-
- Training logs: [zip](https://huggingface.co/h2oai/h2ogpt-oig-oasst1-256-
|
25 |
|
26 |
## Usage
|
27 |
|
@@ -36,13 +36,13 @@ pip install accelerate==0.18.0
|
|
36 |
import torch
|
37 |
from transformers import pipeline
|
38 |
|
39 |
-
generate_text = pipeline(model="h2oai/h2ogpt-oig-oasst1-256-
|
40 |
|
41 |
res = generate_text("Why is drinking water so healthy?", max_new_tokens=100)
|
42 |
print(res[0]["generated_text"])
|
43 |
```
|
44 |
|
45 |
-
Alternatively, if you prefer to not use `trust_remote_code=True` you can download [instruct_pipeline.py](https://huggingface.co/h2oai/h2ogpt-oig-oasst1-256-
|
46 |
store it alongside your notebook, and construct the pipeline yourself from the loaded model and tokenizer:
|
47 |
|
48 |
```python
|
@@ -90,7 +90,7 @@ GPTNeoXForCausalLM(
|
|
90 |
|
91 |
```json
|
92 |
GPTNeoXConfig {
|
93 |
-
"_name_or_path": "h2oai/h2ogpt-oig-oasst1-256-
|
94 |
"architectures": [
|
95 |
"GPTNeoXForCausalLM"
|
96 |
],
|
|
|
16 |
# h2oGPT Model Card
|
17 |
## Summary
|
18 |
|
19 |
+
H2O.ai's `h2ogpt-oig-oasst1-256-6_9b` is a 6.9 billion parameter instruction-following large language model licensed for commercial use.
|
20 |
|
21 |
- Base model: [EleutherAI/pythia-6.9b](https://huggingface.co/EleutherAI/pythia-6.9b)
|
22 |
- Fine-tuning dataset: [h2oai/h2ogpt-oig-oasst1-instruct-cleaned-v1](https://huggingface.co/datasets/h2oai/h2ogpt-oig-oasst1-instruct-cleaned-v1)
|
23 |
- Data-prep and fine-tuning code: [H2O.ai Github](https://github.com/h2oai/h2ogpt)
|
24 |
+
- Training logs: [zip](https://huggingface.co/h2oai/h2ogpt-oig-oasst1-256-6_9b/blob/main/pythia-6.9b.h2ogpt-oig-oasst1-instruct-cleaned-v1.json.1_epochs.5fc91911bc2bfaaf3b6c2de577c4b0ae45a07a4a.9.zip)
|
25 |
|
26 |
## Usage
|
27 |
|
|
|
36 |
import torch
|
37 |
from transformers import pipeline
|
38 |
|
39 |
+
generate_text = pipeline(model="h2oai/h2ogpt-oig-oasst1-256-6_9b", torch_dtype=torch.bfloat16, trust_remote_code=True, device_map="auto")
|
40 |
|
41 |
res = generate_text("Why is drinking water so healthy?", max_new_tokens=100)
|
42 |
print(res[0]["generated_text"])
|
43 |
```
|
44 |
|
45 |
+
Alternatively, if you prefer to not use `trust_remote_code=True` you can download [instruct_pipeline.py](https://huggingface.co/h2oai/h2ogpt-oig-oasst1-256-6_9b/blob/main/h2oai_pipeline.py),
|
46 |
store it alongside your notebook, and construct the pipeline yourself from the loaded model and tokenizer:
|
47 |
|
48 |
```python
|
|
|
90 |
|
91 |
```json
|
92 |
GPTNeoXConfig {
|
93 |
+
"_name_or_path": "h2oai/h2ogpt-oig-oasst1-256-6_9b",
|
94 |
"architectures": [
|
95 |
"GPTNeoXForCausalLM"
|
96 |
],
|