arnocandel commited on
Commit
07a1c9f
1 Parent(s): cf67bde

Upload README.md

Browse files
Files changed (1) hide show
  1. README.md +161 -0
README.md CHANGED
@@ -1,3 +1,164 @@
1
  ---
2
  license: apache-2.0
 
 
 
 
3
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
  license: apache-2.0
3
+ language:
4
+ - en
5
+ library_name: transformers
6
+ inference: false
7
  ---
8
+ # h2oGPT Model Card
9
+ ## Summary
10
+
11
+ H2O.ai's `h2ogpt-oig-oasst1-256-6.9b` is a 6.9 billion parameter instruction-following large language model licensed for commercial use.
12
+
13
+ - Base model: EleutherAI/pythia-6.9b
14
+ - Fine-tuning dataset: [h2oai/h2ogpt-oig-oasst1-instruct-cleaned-v1](https://huggingface.co/datasets/h2oai/h2ogpt-oig-oasst1-instruct-cleaned-v1)
15
+ - Data-prep and fine-tuning code: [H2O.ai Github](https://github.com/h2oai/h2ogpt)
16
+ - Training logs: [zip](https://huggingface.co/h2oai/h2ogpt-oig-oasst1-256-6.9b/blob/main/pythia-6.9b.h2ogpt-oig-oasst1-instruct-cleaned-v1.json.1_epochs.5fc91911bc2bfaaf3b6c2de577c4b0ae45a07a4a.9.zip)
17
+
18
+ ## Usage
19
+
20
+ To use the model with the `transformers` library on a machine with GPUs, first make sure you have the `transformers` and `accelerate` libraries installed.
21
+
22
+ ```bash
23
+ pip install transformers==4.28.1
24
+ ```
25
+
26
+ ```python
27
+ import torch
28
+ from transformers import pipeline
29
+
30
+ generate_text = pipeline(model="h2oai/h2ogpt-oig-oasst1-256-6.9b", torch_dtype=torch.bfloat16, trust_remote_code=True, device_map="auto")
31
+ res = generate_text("Why is drinking water so healthy?")
32
+ print(res[0]["generated_text"])
33
+ ```
34
+
35
+ Alternatively, if you prefer to not use `trust_remote_code=True` you can download [instruct_pipeline.py](https://huggingface.co/h2oai/h2ogpt-oig-oasst1-256-6.9b/blob/main/h2oai_pipeline.py),
36
+ store it alongside your notebook, and construct the pipeline yourself from the loaded model and tokenizer:
37
+
38
+ ```
39
+ import torch
40
+ from h2oai_pipeline import H2OTextGenerationPipeline
41
+ from transformers import AutoModelForCausalLM, AutoTokenizer
42
+ tokenizer = AutoTokenizer.from_pretrained("h2oai/h2ogpt-oig-oasst1-256-6.9b", padding_side="left")
43
+ model = AutoModelForCausalLM.from_pretrained("h2oai/h2ogpt-oig-oasst1-256-6.9b", device_map="auto", torch_dtype=torch.bfloat16)
44
+
45
+ generate_text = H2OTextGenerationPipeline(model=model, tokenizer=tokenizer)
46
+ ```
47
+
48
+ ### LangChain Usage
49
+
50
+ To use the pipeline with LangChain, you must set `return_full_text=True`, as LangChain expects the full text to be returned
51
+ and the default for the pipeline is to only return the new text.
52
+
53
+ ```
54
+ import torch
55
+ from transformers import pipeline
56
+
57
+ generate_text = pipeline(model="h2oai/h2ogpt-oig-oasst1-256-6.9b", torch_dtype=torch.bfloat16,
58
+ trust_remote_code=True, device_map="auto", return_full_text=True)
59
+ ```
60
+
61
+ You can create a prompt that either has only an instruction or has an instruction with context:
62
+
63
+ ```
64
+ from langchain import PromptTemplate, LLMChain
65
+ from langchain.llms import HuggingFacePipeline
66
+
67
+ # template for an instrution with no input
68
+ prompt = PromptTemplate(
69
+ input_variables=["instruction"],
70
+ template="{instruction}")
71
+
72
+ # template for an instruction with input
73
+ prompt_with_context = PromptTemplate(
74
+ input_variables=["instruction", "context"],
75
+ template="{instruction}\n\nInput:\n{context}")
76
+
77
+ hf_pipeline = HuggingFacePipeline(pipeline=generate_text)
78
+
79
+ llm_chain = LLMChain(llm=hf_pipeline, prompt=prompt)
80
+ llm_context_chain = LLMChain(llm=hf_pipeline, prompt=prompt_with_context)
81
+ ```
82
+
83
+ Example predicting using a simple instruction:
84
+
85
+ ```
86
+ print(llm_chain.predict(instruction="Why is drinking water so healthy?").lstrip())
87
+ ```
88
+
89
+ Example predicting using an instruction with context:
90
+
91
+ ```
92
+ context = """Model A: AUC=0.8
93
+ Model from Driverless AI: AUC=0.95
94
+ Model C: AUC=0.6
95
+ Model D: AUC=0.7
96
+ """
97
+
98
+ print(llm_context_chain.predict(instruction="Which model performs best?", context=context).lstrip())
99
+ ```
100
+
101
+ ## Model Architecture
102
+
103
+ ```
104
+ GPTNeoXForCausalLM(
105
+ (gpt_neox): GPTNeoXModel(
106
+ (embed_in): Embedding(50432, 4096)
107
+ (layers): ModuleList(
108
+ (0-31): 32 x GPTNeoXLayer(
109
+ (input_layernorm): LayerNorm((4096,), eps=1e-05, elementwise_affine=True)
110
+ (post_attention_layernorm): LayerNorm((4096,), eps=1e-05, elementwise_affine=True)
111
+ (attention): GPTNeoXAttention(
112
+ (rotary_emb): RotaryEmbedding()
113
+ (query_key_value): Linear(in_features=4096, out_features=12288, bias=True)
114
+ (dense): Linear(in_features=4096, out_features=4096, bias=True)
115
+ )
116
+ (mlp): GPTNeoXMLP(
117
+ (dense_h_to_4h): Linear(in_features=4096, out_features=16384, bias=True)
118
+ (dense_4h_to_h): Linear(in_features=16384, out_features=4096, bias=True)
119
+ (act): GELUActivation()
120
+ )
121
+ )
122
+ )
123
+ (final_layer_norm): LayerNorm((4096,), eps=1e-05, elementwise_affine=True)
124
+ )
125
+ (embed_out): Linear(in_features=4096, out_features=50432, bias=False)
126
+ )
127
+ ```
128
+
129
+ ## Model Configuration
130
+
131
+ ```
132
+ GPTNeoXConfig {
133
+ "_name_or_path": "h2oai/h2ogpt-oig-oasst1-256-6.9b",
134
+ "architectures": [
135
+ "GPTNeoXForCausalLM"
136
+ ],
137
+ "bos_token_id": 0,
138
+ "custom_pipelines": {
139
+ "text-generation": {
140
+ "impl": "h2oai_pipeline.H2OTextGenerationPipeline",
141
+ "pt": "AutoModelForCausalLM"
142
+ }
143
+ },
144
+ "eos_token_id": 0,
145
+ "hidden_act": "gelu",
146
+ "hidden_size": 4096,
147
+ "initializer_range": 0.02,
148
+ "intermediate_size": 16384,
149
+ "layer_norm_eps": 1e-05,
150
+ "max_position_embeddings": 2048,
151
+ "model_type": "gpt_neox",
152
+ "num_attention_heads": 32,
153
+ "num_hidden_layers": 32,
154
+ "rotary_emb_base": 10000,
155
+ "rotary_pct": 0.25,
156
+ "tie_word_embeddings": false,
157
+ "torch_dtype": "float16",
158
+ "transformers_version": "4.28.1",
159
+ "use_cache": true,
160
+ "use_parallel_residual": true,
161
+ "vocab_size": 50432
162
+ }
163
+
164
+ ```