--- license: apache-2.0 language: - en library_name: transformers inference: false --- # h2oGPT Model Card ## Summary H2O.ai's `h2ogpt-oig-oasst1-256-6.9b` is a 6.9 billion parameter instruction-following large language model licensed for commercial use. - Base model: EleutherAI/pythia-6.9b - Fine-tuning dataset: [h2oai/h2ogpt-oig-oasst1-instruct-cleaned-v1](https://huggingface.co/datasets/h2oai/h2ogpt-oig-oasst1-instruct-cleaned-v1) - Data-prep and fine-tuning code: [H2O.ai Github](https://github.com/h2oai/h2ogpt) - Training logs: [zip](https://huggingface.co/h2oai/h2ogpt-oig-oasst1-256-6.9b/blob/main/pythia-6.9b.h2ogpt-oig-oasst1-instruct-cleaned-v1.json.1_epochs.5fc91911bc2bfaaf3b6c2de577c4b0ae45a07a4a.9.zip) ## Usage To use the model with the `transformers` library on a machine with GPUs, first make sure you have the `transformers` and `accelerate` libraries installed. ```bash pip install transformers==4.28.1 ``` ```python import torch from transformers import pipeline generate_text = pipeline(model="h2oai/h2ogpt-oig-oasst1-256-6.9b", torch_dtype=torch.bfloat16, trust_remote_code=True, device_map="auto") res = generate_text("Why is drinking water so healthy?") print(res[0]["generated_text"]) ``` Alternatively, if you prefer to not use `trust_remote_code=True` you can download [instruct_pipeline.py](https://huggingface.co/h2oai/h2ogpt-oig-oasst1-256-6.9b/blob/main/h2oai_pipeline.py), store it alongside your notebook, and construct the pipeline yourself from the loaded model and tokenizer: ``` import torch from h2oai_pipeline import H2OTextGenerationPipeline from transformers import AutoModelForCausalLM, AutoTokenizer tokenizer = AutoTokenizer.from_pretrained("h2oai/h2ogpt-oig-oasst1-256-6.9b", padding_side="left") model = AutoModelForCausalLM.from_pretrained("h2oai/h2ogpt-oig-oasst1-256-6.9b", device_map="auto", torch_dtype=torch.bfloat16) generate_text = H2OTextGenerationPipeline(model=model, tokenizer=tokenizer) ``` ### LangChain Usage To use the pipeline with LangChain, you must set `return_full_text=True`, as LangChain expects the full text to be returned and the default for the pipeline is to only return the new text. ``` import torch from transformers import pipeline generate_text = pipeline(model="h2oai/h2ogpt-oig-oasst1-256-6.9b", torch_dtype=torch.bfloat16, trust_remote_code=True, device_map="auto", return_full_text=True) ``` You can create a prompt that either has only an instruction or has an instruction with context: ``` from langchain import PromptTemplate, LLMChain from langchain.llms import HuggingFacePipeline # template for an instrution with no input prompt = PromptTemplate( input_variables=["instruction"], template="{instruction}") # template for an instruction with input prompt_with_context = PromptTemplate( input_variables=["instruction", "context"], template="{instruction}\n\nInput:\n{context}") hf_pipeline = HuggingFacePipeline(pipeline=generate_text) llm_chain = LLMChain(llm=hf_pipeline, prompt=prompt) llm_context_chain = LLMChain(llm=hf_pipeline, prompt=prompt_with_context) ``` Example predicting using a simple instruction: ``` print(llm_chain.predict(instruction="Why is drinking water so healthy?").lstrip()) ``` Example predicting using an instruction with context: ``` context = """Model A: AUC=0.8 Model from Driverless AI: AUC=0.95 Model C: AUC=0.6 Model D: AUC=0.7 """ print(llm_context_chain.predict(instruction="Which model performs best?", context=context).lstrip()) ``` ## Model Architecture ``` GPTNeoXForCausalLM( (gpt_neox): GPTNeoXModel( (embed_in): Embedding(50432, 4096) (layers): ModuleList( (0-31): 32 x GPTNeoXLayer( (input_layernorm): LayerNorm((4096,), eps=1e-05, elementwise_affine=True) (post_attention_layernorm): LayerNorm((4096,), eps=1e-05, elementwise_affine=True) (attention): GPTNeoXAttention( (rotary_emb): RotaryEmbedding() (query_key_value): Linear(in_features=4096, out_features=12288, bias=True) (dense): Linear(in_features=4096, out_features=4096, bias=True) ) (mlp): GPTNeoXMLP( (dense_h_to_4h): Linear(in_features=4096, out_features=16384, bias=True) (dense_4h_to_h): Linear(in_features=16384, out_features=4096, bias=True) (act): GELUActivation() ) ) ) (final_layer_norm): LayerNorm((4096,), eps=1e-05, elementwise_affine=True) ) (embed_out): Linear(in_features=4096, out_features=50432, bias=False) ) ``` ## Model Configuration ``` GPTNeoXConfig { "_name_or_path": "h2oai/h2ogpt-oig-oasst1-256-6.9b", "architectures": [ "GPTNeoXForCausalLM" ], "bos_token_id": 0, "custom_pipelines": { "text-generation": { "impl": "h2oai_pipeline.H2OTextGenerationPipeline", "pt": "AutoModelForCausalLM" } }, "eos_token_id": 0, "hidden_act": "gelu", "hidden_size": 4096, "initializer_range": 0.02, "intermediate_size": 16384, "layer_norm_eps": 1e-05, "max_position_embeddings": 2048, "model_type": "gpt_neox", "num_attention_heads": 32, "num_hidden_layers": 32, "rotary_emb_base": 10000, "rotary_pct": 0.25, "tie_word_embeddings": false, "torch_dtype": "float16", "transformers_version": "4.28.1", "use_cache": true, "use_parallel_residual": true, "vocab_size": 50432 } ```