Initial commit
Browse files- README.md +37 -0
- a2c-PandaReachDense-v2.zip +3 -0
- a2c-PandaReachDense-v2/_stable_baselines3_version +1 -0
- a2c-PandaReachDense-v2/data +96 -0
- a2c-PandaReachDense-v2/policy.optimizer.pth +3 -0
- a2c-PandaReachDense-v2/policy.pth +3 -0
- a2c-PandaReachDense-v2/pytorch_variables.pth +3 -0
- a2c-PandaReachDense-v2/system_info.txt +7 -0
- config.json +1 -0
- replay.mp4 +0 -0
- results.json +1 -0
- vec_normalize.pkl +3 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- PandaReachDense-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: A2C
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: PandaReachDense-v2
|
16 |
+
type: PandaReachDense-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: -0.80 +/- 0.25
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **A2C** Agent playing **PandaReachDense-v2**
|
25 |
+
This is a trained model of a **A2C** agent playing **PandaReachDense-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
a2c-PandaReachDense-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9c24c621a6c2b160225105d4b165f074468615673112edd84d9bcfafcfb77552
|
3 |
+
size 109534
|
a2c-PandaReachDense-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.7.0
|
a2c-PandaReachDense-v2/data
ADDED
@@ -0,0 +1,96 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7fb1c161e820>",
|
8 |
+
"__abstractmethods__": "frozenset()",
|
9 |
+
"_abc_impl": "<_abc_data object at 0x7fb1c1620300>"
|
10 |
+
},
|
11 |
+
"verbose": 1,
|
12 |
+
"policy_kwargs": {
|
13 |
+
":type:": "<class 'dict'>",
|
14 |
+
":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
|
15 |
+
"log_std_init": -2,
|
16 |
+
"ortho_init": false,
|
17 |
+
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
18 |
+
"optimizer_kwargs": {
|
19 |
+
"alpha": 0.99,
|
20 |
+
"eps": 1e-05,
|
21 |
+
"weight_decay": 0
|
22 |
+
}
|
23 |
+
},
|
24 |
+
"observation_space": {
|
25 |
+
":type:": "<class 'gym.spaces.dict.Dict'>",
|
26 |
+
":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu",
|
27 |
+
"spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])",
|
28 |
+
"_shape": null,
|
29 |
+
"dtype": null,
|
30 |
+
"_np_random": null
|
31 |
+
},
|
32 |
+
"action_space": {
|
33 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
34 |
+
":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==",
|
35 |
+
"dtype": "float32",
|
36 |
+
"_shape": [
|
37 |
+
3
|
38 |
+
],
|
39 |
+
"low": "[-1. -1. -1.]",
|
40 |
+
"high": "[1. 1. 1.]",
|
41 |
+
"bounded_below": "[ True True True]",
|
42 |
+
"bounded_above": "[ True True True]",
|
43 |
+
"_np_random": null
|
44 |
+
},
|
45 |
+
"n_envs": 4,
|
46 |
+
"num_timesteps": 1000000,
|
47 |
+
"_total_timesteps": 1000000.0,
|
48 |
+
"_num_timesteps_at_start": 0,
|
49 |
+
"seed": null,
|
50 |
+
"action_noise": null,
|
51 |
+
"start_time": 1674051484400769539,
|
52 |
+
"learning_rate": 0.00096,
|
53 |
+
"tensorboard_log": null,
|
54 |
+
"lr_schedule": {
|
55 |
+
":type:": "<class 'function'>",
|
56 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
57 |
+
},
|
58 |
+
"_last_obs": {
|
59 |
+
":type:": "<class 'collections.OrderedDict'>",
|
60 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAuvnWPq5YM7vQNSs/uvnWPq5YM7vQNSs/uvnWPq5YM7vQNSs/uvnWPq5YM7vQNSs/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAHxHAvSm4jz+5ww2/Azq3vs+QLD/fBwG/BkDDv9iNzD8Vrdk/Nf//vlG6nL/n9Qq8lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAC6+dY+rlgzu9A1Kz/hpXw9UDToOjQsiz26+dY+rlgzu9A1Kz/hpXw9UDToOjQsiz26+dY+rlgzu9A1Kz/hpXw9UDToOjQsiz26+dY+rlgzu9A1Kz/hpXw9UDToOjQsiz2UaA5LBEsGhpRoEnSUUpR1Lg==",
|
61 |
+
"achieved_goal": "[[ 0.419874 -0.00273661 0.66878986]\n [ 0.419874 -0.00273661 0.66878986]\n [ 0.419874 -0.00273661 0.66878986]\n [ 0.419874 -0.00273661 0.66878986]]",
|
62 |
+
"desired_goal": "[[-0.09378266 1.1228076 -0.55376774]\n [-0.35786447 0.6740846 -0.50402635]\n [-1.5253913 1.5980787 1.7005945 ]\n [-0.49999395 -1.2244359 -0.00848148]]",
|
63 |
+
"observation": "[[ 0.419874 -0.00273661 0.66878986 0.06168163 0.00177158 0.0679554 ]\n [ 0.419874 -0.00273661 0.66878986 0.06168163 0.00177158 0.0679554 ]\n [ 0.419874 -0.00273661 0.66878986 0.06168163 0.00177158 0.0679554 ]\n [ 0.419874 -0.00273661 0.66878986 0.06168163 0.00177158 0.0679554 ]]"
|
64 |
+
},
|
65 |
+
"_last_episode_starts": {
|
66 |
+
":type:": "<class 'numpy.ndarray'>",
|
67 |
+
":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
|
68 |
+
},
|
69 |
+
"_last_original_obs": {
|
70 |
+
":type:": "<class 'collections.OrderedDict'>",
|
71 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAg80KPrO67LvsJ38+SwMTPj/10bwljS4+j8isPeE9pLzzuhI+Ooilvcqp3z3KdYQ+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
|
72 |
+
"achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
|
73 |
+
"desired_goal": "[[ 0.13554959 -0.0072244 0.24917573]\n [ 0.14356725 -0.02562964 0.1704603 ]\n [ 0.08436691 -0.02004904 0.14329128]\n [-0.08082624 0.10921057 0.25871116]]",
|
74 |
+
"observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
|
75 |
+
},
|
76 |
+
"_episode_num": 0,
|
77 |
+
"use_sde": true,
|
78 |
+
"sde_sample_freq": -1,
|
79 |
+
"_current_progress_remaining": 0.0,
|
80 |
+
"ep_info_buffer": {
|
81 |
+
":type:": "<class 'collections.deque'>",
|
82 |
+
":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMId700RYDT37+UhpRSlIwBbJRLMowBdJRHQKVvviPyTZB1fZQoaAZoCWgPQwjItDaN7TXhv5SGlFKUaBVLMmgWR0Clb34vexfOdX2UKGgGaAloD0MIxXJLqyFx0r+UhpRSlGgVSzJoFkdApW8++RHPNXV9lChoBmgJaA9DCLwH6L6c2eG/lIaUUpRoFUsyaBZHQKVvAIi1Rch1fZQoaAZoCWgPQwjwayQJwpXgv5SGlFKUaBVLMmgWR0ClcN9Aood/dX2UKGgGaAloD0MIu/JZngd307+UhpRSlGgVSzJoFkdApXCfkBCD3HV9lChoBmgJaA9DCLKbGf1oOOW/lIaUUpRoFUsyaBZHQKVwYR3/xUh1fZQoaAZoCWgPQwgzG2SSkTPhv5SGlFKUaBVLMmgWR0ClcCMK1G9YdX2UKGgGaAloD0MIEcMOY9Lf3L+UhpRSlGgVSzJoFkdApXHt09yLh3V9lChoBmgJaA9DCJlKP+Hs1uC/lIaUUpRoFUsyaBZHQKVxrdweeWh1fZQoaAZoCWgPQwhzEd+JWS/jv5SGlFKUaBVLMmgWR0ClcW8YIjW1dX2UKGgGaAloD0MIfSB551AG5b+UhpRSlGgVSzJoFkdApXEw1FYuCnV9lChoBmgJaA9DCEdYVMTpJN+/lIaUUpRoFUsyaBZHQKVzAuyu6mR1fZQoaAZoCWgPQwjcSq/NxkrOv5SGlFKUaBVLMmgWR0ClcsQHzH0cdX2UKGgGaAloD0MI2lTdI5ur4r+UhpRSlGgVSzJoFkdApXKFmrbQC3V9lChoBmgJaA9DCNmY1xGHbNK/lIaUUpRoFUsyaBZHQKVySAq/dqN1fZQoaAZoCWgPQwiYNEbrqGrov5SGlFKUaBVLMmgWR0CldAr2YfGNdX2UKGgGaAloD0MIIt+l1CVj4L+UhpRSlGgVSzJoFkdApXPK1Vo6CHV9lChoBmgJaA9DCK4tPC8VG9O/lIaUUpRoFUsyaBZHQKVzi580DU51fZQoaAZoCWgPQwiQ9GkV/aHVv5SGlFKUaBVLMmgWR0Clc00pd8iOdX2UKGgGaAloD0MINEjBU8gV4L+UhpRSlGgVSzJoFkdApXUgnUlRg3V9lChoBmgJaA9DCNpYiXlW0uC/lIaUUpRoFUsyaBZHQKV04NPxhDx1fZQoaAZoCWgPQwiSPq2iPzTdv5SGlFKUaBVLMmgWR0CldKHXVbzLdX2UKGgGaAloD0MI1HyVfOwu3b+UhpRSlGgVSzJoFkdApXRj1ZkkKXV9lChoBmgJaA9DCMy209aIYOC/lIaUUpRoFUsyaBZHQKV2Tzwtrbh1fZQoaAZoCWgPQwj7IMuCiT/qv5SGlFKUaBVLMmgWR0Cldg9GRV6vdX2UKGgGaAloD0MIN8ZOeAlO57+UhpRSlGgVSzJoFkdApXXRC8e0X3V9lChoBmgJaA9DCGAfnbryWd+/lIaUUpRoFUsyaBZHQKV1ktGNJe51fZQoaAZoCWgPQwjNHf0v16Lev5SGlFKUaBVLMmgWR0Cld1dC3PRidX2UKGgGaAloD0MIE7afjPFhyL+UhpRSlGgVSzJoFkdApXcXzpX6qXV9lChoBmgJaA9DCNJT5BBxc8i/lIaUUpRoFUsyaBZHQKV22NuLrHF1fZQoaAZoCWgPQwjMs5JWfEPfv5SGlFKUaBVLMmgWR0Cldpp6Y3NtdX2UKGgGaAloD0MIYcWp1sIs5r+UhpRSlGgVSzJoFkdApXiA8IRh+nV9lChoBmgJaA9DCDkmi/uPTOa/lIaUUpRoFUsyaBZHQKV4QLronrp1fZQoaAZoCWgPQwj2DOGYZU/Kv5SGlFKUaBVLMmgWR0CleAF6Z6UrdX2UKGgGaAloD0MIpgnbT8b43r+UhpRSlGgVSzJoFkdApXfC/TLGJnV9lChoBmgJaA9DCPJCOjyE8de/lIaUUpRoFUsyaBZHQKV5k/jbSJF1fZQoaAZoCWgPQwjHL7yS5Lnov5SGlFKUaBVLMmgWR0CleVPzOHFhdX2UKGgGaAloD0MIOC9OfLWj2r+UhpRSlGgVSzJoFkdApXkU4o7V8XV9lChoBmgJaA9DCHBh3Xh35Oe/lIaUUpRoFUsyaBZHQKV41p+MIeJ1fZQoaAZoCWgPQwg9KChFK/fUv5SGlFKUaBVLMmgWR0Clepa9CeEqdX2UKGgGaAloD0MI9zsUBfpE2r+UhpRSlGgVSzJoFkdApXpWrlvIfnV9lChoBmgJaA9DCI7qdCDrqdG/lIaUUpRoFUsyaBZHQKV6F3hXKbN1fZQoaAZoCWgPQwhJSKRt/InXv5SGlFKUaBVLMmgWR0CledlsHjZMdX2UKGgGaAloD0MIILJIE+8A5L+UhpRSlGgVSzJoFkdApXup7u2JBXV9lChoBmgJaA9DCIygMZOoF+G/lIaUUpRoFUsyaBZHQKV7ae8PFvR1fZQoaAZoCWgPQwgP1ZRkHQ7jv5SGlFKUaBVLMmgWR0CleyrVvuPWdX2UKGgGaAloD0MIkIR9O4kI1b+UhpRSlGgVSzJoFkdApXrsdPtUoHV9lChoBmgJaA9DCNxHbk26Lcm/lIaUUpRoFUsyaBZHQKV8tPnjhk11fZQoaAZoCWgPQwh72uGvyRrYv5SGlFKUaBVLMmgWR0ClfHTaTOgQdX2UKGgGaAloD0MIQ8U4fxMK0r+UhpRSlGgVSzJoFkdApXw11U2kz3V9lChoBmgJaA9DCEktlExO7dq/lIaUUpRoFUsyaBZHQKV79+BH09R1fZQoaAZoCWgPQwhsdw/QfTnov5SGlFKUaBVLMmgWR0Clfc6WHDaXdX2UKGgGaAloD0MIPQrXo3A93r+UhpRSlGgVSzJoFkdApX2On0kGA3V9lChoBmgJaA9DCDdwB+qUR9y/lIaUUpRoFUsyaBZHQKV9T7dBSk11fZQoaAZoCWgPQwiAn3HhQMjhv5SGlFKUaBVLMmgWR0ClfRHAZbY9dX2UKGgGaAloD0MIXoHoSZlU4r+UhpRSlGgVSzJoFkdApX7uWUr08XV9lChoBmgJaA9DCIWzW8tkOOW/lIaUUpRoFUsyaBZHQKV+rmKZUkx1fZQoaAZoCWgPQwheud42UyHov5SGlFKUaBVLMmgWR0Clfm+FDfFadX2UKGgGaAloD0MIsrrVc9L74L+UhpRSlGgVSzJoFkdApX4xQcghbHV9lChoBmgJaA9DCImYEkn0Mt2/lIaUUpRoFUsyaBZHQKWACcx0uDl1fZQoaAZoCWgPQwi+vtalRmjjv5SGlFKUaBVLMmgWR0Clf8n+yZ8bdX2UKGgGaAloD0MIMXxETImk5L+UhpRSlGgVSzJoFkdApX+K4MF2V3V9lChoBmgJaA9DCF34wfnUseK/lIaUUpRoFUsyaBZHQKV/TW+49X91fZQoaAZoCWgPQwjNI38w8NzUv5SGlFKUaBVLMmgWR0ClgRzk6tDEdX2UKGgGaAloD0MISP5g4Ln33L+UhpRSlGgVSzJoFkdApYDc5CF9KHV9lChoBmgJaA9DCLQAbatZZ9K/lIaUUpRoFUsyaBZHQKWAnb+tKZl1fZQoaAZoCWgPQwjt9IO6SKHfv5SGlFKUaBVLMmgWR0ClgF9VvMr3dX2UKGgGaAloD0MIEqPnFroS3b+UhpRSlGgVSzJoFkdApYI0KsuFpXV9lChoBmgJaA9DCJIf8SvWcM+/lIaUUpRoFUsyaBZHQKWB9FSbYsd1fZQoaAZoCWgPQwixicxc4PLlv5SGlFKUaBVLMmgWR0ClgbVPepGXdX2UKGgGaAloD0MIq5MzFHe82L+UhpRSlGgVSzJoFkdApYF3hQ3xWnV9lChoBmgJaA9DCAHg2LPnMta/lIaUUpRoFUsyaBZHQKWDP6fJ3gV1fZQoaAZoCWgPQwiGx34WS5Hhv5SGlFKUaBVLMmgWR0Clgv+vpyIYdX2UKGgGaAloD0MIjL/tCRLb3L+UhpRSlGgVSzJoFkdApYLAl+mWMXV9lChoBmgJaA9DCBgFwePbO+S/lIaUUpRoFUsyaBZHQKWCgoOQQtl1fZQoaAZoCWgPQwjSNCiaB7Div5SGlFKUaBVLMmgWR0ClhGPrGBFvdX2UKGgGaAloD0MItVAyObWz5r+UhpRSlGgVSzJoFkdApYQj/EOy3XV9lChoBmgJaA9DCIMWEjC6vN6/lIaUUpRoFUsyaBZHQKWD5N8ma6V1fZQoaAZoCWgPQwg1uK0tPK/mv5SGlFKUaBVLMmgWR0Clg6bNbC79dX2UKGgGaAloD0MIehfvx+0X77+UhpRSlGgVSzJoFkdApYWPsRg7YHV9lChoBmgJaA9DCNsWZTbIpOG/lIaUUpRoFUsyaBZHQKWFT93r2QJ1fZQoaAZoCWgPQwjx2M9iKRLmv5SGlFKUaBVLMmgWR0ClhRDbi6xxdX2UKGgGaAloD0MIZk8Cm3Pw4b+UhpRSlGgVSzJoFkdApYTSfthNNHV9lChoBmgJaA9DCLyzdtuFpvO/lIaUUpRoFUsyaBZHQKWGpqrzXjF1fZQoaAZoCWgPQwjtgOuKGSHxv5SGlFKUaBVLMmgWR0ClhmbQswtbdX2UKGgGaAloD0MINGYS9YLP5b+UhpRSlGgVSzJoFkdApYYoGKQ7tHV9lChoBmgJaA9DCJHUQsnk1O+/lIaUUpRoFUsyaBZHQKWF6ktVaOh1fZQoaAZoCWgPQwgouFhRg+njv5SGlFKUaBVLMmgWR0Clh7JwS8J2dX2UKGgGaAloD0MIVK2FWWhn47+UhpRSlGgVSzJoFkdApYdybnX/YXV9lChoBmgJaA9DCNaQuMfSB+O/lIaUUpRoFUsyaBZHQKWHM3n6l+F1fZQoaAZoCWgPQwh4RIXq5mLyv5SGlFKUaBVLMmgWR0ClhvVc2R7rdX2UKGgGaAloD0MIK4cW2c534b+UhpRSlGgVSzJoFkdApYjBFkQPJHV9lChoBmgJaA9DCJyHE5hO6+G/lIaUUpRoFUsyaBZHQKWIgUPhAGB1fZQoaAZoCWgPQwheY5eo3hrqv5SGlFKUaBVLMmgWR0CliEIxQBPsdX2UKGgGaAloD0MIxy5RvTWw4r+UhpRSlGgVSzJoFkdApYgDu6VdHHV9lChoBmgJaA9DCEyqtpvgm+e/lIaUUpRoFUsyaBZHQKWJ1+FUQ051fZQoaAZoCWgPQwgSUOEIUinSv5SGlFKUaBVLMmgWR0CliZfOUt7KdX2UKGgGaAloD0MIp7Io7KIo9b+UhpRSlGgVSzJoFkdApYlYt+TePHV9lChoBmgJaA9DCGCsb2Byo+G/lIaUUpRoFUsyaBZHQKWJGlBQemx1ZS4="
|
83 |
+
},
|
84 |
+
"ep_success_buffer": {
|
85 |
+
":type:": "<class 'collections.deque'>",
|
86 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
87 |
+
},
|
88 |
+
"_n_updates": 31250,
|
89 |
+
"n_steps": 8,
|
90 |
+
"gamma": 0.99,
|
91 |
+
"gae_lambda": 0.9,
|
92 |
+
"ent_coef": 0.0,
|
93 |
+
"vf_coef": 0.4,
|
94 |
+
"max_grad_norm": 0.5,
|
95 |
+
"normalize_advantage": false
|
96 |
+
}
|
a2c-PandaReachDense-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:24adcbfe8581e13b73454053252047b31f0d1c216f9b9d198355c98e29a9fc19
|
3 |
+
size 45438
|
a2c-PandaReachDense-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d929fa5fcc563a3b51b8fc16bcf9b8a726608fc2756e74161ef9948afbd28470
|
3 |
+
size 46718
|
a2c-PandaReachDense-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
a2c-PandaReachDense-v2/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
|
2 |
+
- Python: 3.8.10
|
3 |
+
- Stable-Baselines3: 1.7.0
|
4 |
+
- PyTorch: 1.13.1+cu116
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.21.6
|
7 |
+
- Gym: 0.21.0
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7fb1c161e820>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fb1c1620300>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 1000000, "_total_timesteps": 1000000.0, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1674051484400769539, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAuvnWPq5YM7vQNSs/uvnWPq5YM7vQNSs/uvnWPq5YM7vQNSs/uvnWPq5YM7vQNSs/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAHxHAvSm4jz+5ww2/Azq3vs+QLD/fBwG/BkDDv9iNzD8Vrdk/Nf//vlG6nL/n9Qq8lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAC6+dY+rlgzu9A1Kz/hpXw9UDToOjQsiz26+dY+rlgzu9A1Kz/hpXw9UDToOjQsiz26+dY+rlgzu9A1Kz/hpXw9UDToOjQsiz26+dY+rlgzu9A1Kz/hpXw9UDToOjQsiz2UaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 0.419874 -0.00273661 0.66878986]\n [ 0.419874 -0.00273661 0.66878986]\n [ 0.419874 -0.00273661 0.66878986]\n [ 0.419874 -0.00273661 0.66878986]]", "desired_goal": "[[-0.09378266 1.1228076 -0.55376774]\n [-0.35786447 0.6740846 -0.50402635]\n [-1.5253913 1.5980787 1.7005945 ]\n [-0.49999395 -1.2244359 -0.00848148]]", "observation": "[[ 0.419874 -0.00273661 0.66878986 0.06168163 0.00177158 0.0679554 ]\n [ 0.419874 -0.00273661 0.66878986 0.06168163 0.00177158 0.0679554 ]\n [ 0.419874 -0.00273661 0.66878986 0.06168163 0.00177158 0.0679554 ]\n [ 0.419874 -0.00273661 0.66878986 0.06168163 0.00177158 0.0679554 ]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAg80KPrO67LvsJ38+SwMTPj/10bwljS4+j8isPeE9pLzzuhI+Ooilvcqp3z3KdYQ+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[ 0.13554959 -0.0072244 0.24917573]\n [ 0.14356725 -0.02562964 0.1704603 ]\n [ 0.08436691 -0.02004904 0.14329128]\n [-0.08082624 0.10921057 0.25871116]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMId700RYDT37+UhpRSlIwBbJRLMowBdJRHQKVvviPyTZB1fZQoaAZoCWgPQwjItDaN7TXhv5SGlFKUaBVLMmgWR0Clb34vexfOdX2UKGgGaAloD0MIxXJLqyFx0r+UhpRSlGgVSzJoFkdApW8++RHPNXV9lChoBmgJaA9DCLwH6L6c2eG/lIaUUpRoFUsyaBZHQKVvAIi1Rch1fZQoaAZoCWgPQwjwayQJwpXgv5SGlFKUaBVLMmgWR0ClcN9Aood/dX2UKGgGaAloD0MIu/JZngd307+UhpRSlGgVSzJoFkdApXCfkBCD3HV9lChoBmgJaA9DCLKbGf1oOOW/lIaUUpRoFUsyaBZHQKVwYR3/xUh1fZQoaAZoCWgPQwgzG2SSkTPhv5SGlFKUaBVLMmgWR0ClcCMK1G9YdX2UKGgGaAloD0MIEcMOY9Lf3L+UhpRSlGgVSzJoFkdApXHt09yLh3V9lChoBmgJaA9DCJlKP+Hs1uC/lIaUUpRoFUsyaBZHQKVxrdweeWh1fZQoaAZoCWgPQwhzEd+JWS/jv5SGlFKUaBVLMmgWR0ClcW8YIjW1dX2UKGgGaAloD0MIfSB551AG5b+UhpRSlGgVSzJoFkdApXEw1FYuCnV9lChoBmgJaA9DCEdYVMTpJN+/lIaUUpRoFUsyaBZHQKVzAuyu6mR1fZQoaAZoCWgPQwjcSq/NxkrOv5SGlFKUaBVLMmgWR0ClcsQHzH0cdX2UKGgGaAloD0MI2lTdI5ur4r+UhpRSlGgVSzJoFkdApXKFmrbQC3V9lChoBmgJaA9DCNmY1xGHbNK/lIaUUpRoFUsyaBZHQKVySAq/dqN1fZQoaAZoCWgPQwiYNEbrqGrov5SGlFKUaBVLMmgWR0CldAr2YfGNdX2UKGgGaAloD0MIIt+l1CVj4L+UhpRSlGgVSzJoFkdApXPK1Vo6CHV9lChoBmgJaA9DCK4tPC8VG9O/lIaUUpRoFUsyaBZHQKVzi580DU51fZQoaAZoCWgPQwiQ9GkV/aHVv5SGlFKUaBVLMmgWR0Clc00pd8iOdX2UKGgGaAloD0MINEjBU8gV4L+UhpRSlGgVSzJoFkdApXUgnUlRg3V9lChoBmgJaA9DCNpYiXlW0uC/lIaUUpRoFUsyaBZHQKV04NPxhDx1fZQoaAZoCWgPQwiSPq2iPzTdv5SGlFKUaBVLMmgWR0CldKHXVbzLdX2UKGgGaAloD0MI1HyVfOwu3b+UhpRSlGgVSzJoFkdApXRj1ZkkKXV9lChoBmgJaA9DCMy209aIYOC/lIaUUpRoFUsyaBZHQKV2Tzwtrbh1fZQoaAZoCWgPQwj7IMuCiT/qv5SGlFKUaBVLMmgWR0Cldg9GRV6vdX2UKGgGaAloD0MIN8ZOeAlO57+UhpRSlGgVSzJoFkdApXXRC8e0X3V9lChoBmgJaA9DCGAfnbryWd+/lIaUUpRoFUsyaBZHQKV1ktGNJe51fZQoaAZoCWgPQwjNHf0v16Lev5SGlFKUaBVLMmgWR0Cld1dC3PRidX2UKGgGaAloD0MIE7afjPFhyL+UhpRSlGgVSzJoFkdApXcXzpX6qXV9lChoBmgJaA9DCNJT5BBxc8i/lIaUUpRoFUsyaBZHQKV22NuLrHF1fZQoaAZoCWgPQwjMs5JWfEPfv5SGlFKUaBVLMmgWR0Cldpp6Y3NtdX2UKGgGaAloD0MIYcWp1sIs5r+UhpRSlGgVSzJoFkdApXiA8IRh+nV9lChoBmgJaA9DCDkmi/uPTOa/lIaUUpRoFUsyaBZHQKV4QLronrp1fZQoaAZoCWgPQwj2DOGYZU/Kv5SGlFKUaBVLMmgWR0CleAF6Z6UrdX2UKGgGaAloD0MIpgnbT8b43r+UhpRSlGgVSzJoFkdApXfC/TLGJnV9lChoBmgJaA9DCPJCOjyE8de/lIaUUpRoFUsyaBZHQKV5k/jbSJF1fZQoaAZoCWgPQwjHL7yS5Lnov5SGlFKUaBVLMmgWR0CleVPzOHFhdX2UKGgGaAloD0MIOC9OfLWj2r+UhpRSlGgVSzJoFkdApXkU4o7V8XV9lChoBmgJaA9DCHBh3Xh35Oe/lIaUUpRoFUsyaBZHQKV41p+MIeJ1fZQoaAZoCWgPQwg9KChFK/fUv5SGlFKUaBVLMmgWR0Clepa9CeEqdX2UKGgGaAloD0MI9zsUBfpE2r+UhpRSlGgVSzJoFkdApXpWrlvIfnV9lChoBmgJaA9DCI7qdCDrqdG/lIaUUpRoFUsyaBZHQKV6F3hXKbN1fZQoaAZoCWgPQwhJSKRt/InXv5SGlFKUaBVLMmgWR0CledlsHjZMdX2UKGgGaAloD0MIILJIE+8A5L+UhpRSlGgVSzJoFkdApXup7u2JBXV9lChoBmgJaA9DCIygMZOoF+G/lIaUUpRoFUsyaBZHQKV7ae8PFvR1fZQoaAZoCWgPQwgP1ZRkHQ7jv5SGlFKUaBVLMmgWR0CleyrVvuPWdX2UKGgGaAloD0MIkIR9O4kI1b+UhpRSlGgVSzJoFkdApXrsdPtUoHV9lChoBmgJaA9DCNxHbk26Lcm/lIaUUpRoFUsyaBZHQKV8tPnjhk11fZQoaAZoCWgPQwh72uGvyRrYv5SGlFKUaBVLMmgWR0ClfHTaTOgQdX2UKGgGaAloD0MIQ8U4fxMK0r+UhpRSlGgVSzJoFkdApXw11U2kz3V9lChoBmgJaA9DCEktlExO7dq/lIaUUpRoFUsyaBZHQKV79+BH09R1fZQoaAZoCWgPQwhsdw/QfTnov5SGlFKUaBVLMmgWR0Clfc6WHDaXdX2UKGgGaAloD0MIPQrXo3A93r+UhpRSlGgVSzJoFkdApX2On0kGA3V9lChoBmgJaA9DCDdwB+qUR9y/lIaUUpRoFUsyaBZHQKV9T7dBSk11fZQoaAZoCWgPQwiAn3HhQMjhv5SGlFKUaBVLMmgWR0ClfRHAZbY9dX2UKGgGaAloD0MIXoHoSZlU4r+UhpRSlGgVSzJoFkdApX7uWUr08XV9lChoBmgJaA9DCIWzW8tkOOW/lIaUUpRoFUsyaBZHQKV+rmKZUkx1fZQoaAZoCWgPQwheud42UyHov5SGlFKUaBVLMmgWR0Clfm+FDfFadX2UKGgGaAloD0MIsrrVc9L74L+UhpRSlGgVSzJoFkdApX4xQcghbHV9lChoBmgJaA9DCImYEkn0Mt2/lIaUUpRoFUsyaBZHQKWACcx0uDl1fZQoaAZoCWgPQwi+vtalRmjjv5SGlFKUaBVLMmgWR0Clf8n+yZ8bdX2UKGgGaAloD0MIMXxETImk5L+UhpRSlGgVSzJoFkdApX+K4MF2V3V9lChoBmgJaA9DCF34wfnUseK/lIaUUpRoFUsyaBZHQKV/TW+49X91fZQoaAZoCWgPQwjNI38w8NzUv5SGlFKUaBVLMmgWR0ClgRzk6tDEdX2UKGgGaAloD0MISP5g4Ln33L+UhpRSlGgVSzJoFkdApYDc5CF9KHV9lChoBmgJaA9DCLQAbatZZ9K/lIaUUpRoFUsyaBZHQKWAnb+tKZl1fZQoaAZoCWgPQwjt9IO6SKHfv5SGlFKUaBVLMmgWR0ClgF9VvMr3dX2UKGgGaAloD0MIEqPnFroS3b+UhpRSlGgVSzJoFkdApYI0KsuFpXV9lChoBmgJaA9DCJIf8SvWcM+/lIaUUpRoFUsyaBZHQKWB9FSbYsd1fZQoaAZoCWgPQwixicxc4PLlv5SGlFKUaBVLMmgWR0ClgbVPepGXdX2UKGgGaAloD0MIq5MzFHe82L+UhpRSlGgVSzJoFkdApYF3hQ3xWnV9lChoBmgJaA9DCAHg2LPnMta/lIaUUpRoFUsyaBZHQKWDP6fJ3gV1fZQoaAZoCWgPQwiGx34WS5Hhv5SGlFKUaBVLMmgWR0Clgv+vpyIYdX2UKGgGaAloD0MIjL/tCRLb3L+UhpRSlGgVSzJoFkdApYLAl+mWMXV9lChoBmgJaA9DCBgFwePbO+S/lIaUUpRoFUsyaBZHQKWCgoOQQtl1fZQoaAZoCWgPQwjSNCiaB7Div5SGlFKUaBVLMmgWR0ClhGPrGBFvdX2UKGgGaAloD0MItVAyObWz5r+UhpRSlGgVSzJoFkdApYQj/EOy3XV9lChoBmgJaA9DCIMWEjC6vN6/lIaUUpRoFUsyaBZHQKWD5N8ma6V1fZQoaAZoCWgPQwg1uK0tPK/mv5SGlFKUaBVLMmgWR0Clg6bNbC79dX2UKGgGaAloD0MIehfvx+0X77+UhpRSlGgVSzJoFkdApYWPsRg7YHV9lChoBmgJaA9DCNsWZTbIpOG/lIaUUpRoFUsyaBZHQKWFT93r2QJ1fZQoaAZoCWgPQwjx2M9iKRLmv5SGlFKUaBVLMmgWR0ClhRDbi6xxdX2UKGgGaAloD0MIZk8Cm3Pw4b+UhpRSlGgVSzJoFkdApYTSfthNNHV9lChoBmgJaA9DCLyzdtuFpvO/lIaUUpRoFUsyaBZHQKWGpqrzXjF1fZQoaAZoCWgPQwjtgOuKGSHxv5SGlFKUaBVLMmgWR0ClhmbQswtbdX2UKGgGaAloD0MINGYS9YLP5b+UhpRSlGgVSzJoFkdApYYoGKQ7tHV9lChoBmgJaA9DCJHUQsnk1O+/lIaUUpRoFUsyaBZHQKWF6ktVaOh1fZQoaAZoCWgPQwgouFhRg+njv5SGlFKUaBVLMmgWR0Clh7JwS8J2dX2UKGgGaAloD0MIVK2FWWhn47+UhpRSlGgVSzJoFkdApYdybnX/YXV9lChoBmgJaA9DCNaQuMfSB+O/lIaUUpRoFUsyaBZHQKWHM3n6l+F1fZQoaAZoCWgPQwh4RIXq5mLyv5SGlFKUaBVLMmgWR0ClhvVc2R7rdX2UKGgGaAloD0MIK4cW2c534b+UhpRSlGgVSzJoFkdApYjBFkQPJHV9lChoBmgJaA9DCJyHE5hO6+G/lIaUUpRoFUsyaBZHQKWIgUPhAGB1fZQoaAZoCWgPQwheY5eo3hrqv5SGlFKUaBVLMmgWR0CliEIxQBPsdX2UKGgGaAloD0MIxy5RvTWw4r+UhpRSlGgVSzJoFkdApYgDu6VdHHV9lChoBmgJaA9DCEyqtpvgm+e/lIaUUpRoFUsyaBZHQKWJ1+FUQ051fZQoaAZoCWgPQwgSUOEIUinSv5SGlFKUaBVLMmgWR0CliZfOUt7KdX2UKGgGaAloD0MIp7Io7KIo9b+UhpRSlGgVSzJoFkdApYlYt+TePHV9lChoBmgJaA9DCGCsb2Byo+G/lIaUUpRoFUsyaBZHQKWJGlBQemx1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 31250, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
replay.mp4
ADDED
Binary file (302 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": -0.8025492054177448, "std_reward": 0.251949633647808, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-01-18T15:14:20.253765"}
|
vec_normalize.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:aebfc6eae9b715c8abd5d56e2484a6ac4590712a63882ac8363996159999489b
|
3 |
+
size 3212
|