habanoz commited on
Commit
62ef64a
·
1 Parent(s): fe4fb17

Initial commit

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - PandaReachDense-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: PandaReachDense-v2
16
+ type: PandaReachDense-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: -0.80 +/- 0.25
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **A2C** Agent playing **PandaReachDense-v2**
25
+ This is a trained model of a **A2C** agent playing **PandaReachDense-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
a2c-PandaReachDense-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9c24c621a6c2b160225105d4b165f074468615673112edd84d9bcfafcfb77552
3
+ size 109534
a2c-PandaReachDense-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
a2c-PandaReachDense-v2/data ADDED
@@ -0,0 +1,96 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7fb1c161e820>",
8
+ "__abstractmethods__": "frozenset()",
9
+ "_abc_impl": "<_abc_data object at 0x7fb1c1620300>"
10
+ },
11
+ "verbose": 1,
12
+ "policy_kwargs": {
13
+ ":type:": "<class 'dict'>",
14
+ ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
15
+ "log_std_init": -2,
16
+ "ortho_init": false,
17
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
18
+ "optimizer_kwargs": {
19
+ "alpha": 0.99,
20
+ "eps": 1e-05,
21
+ "weight_decay": 0
22
+ }
23
+ },
24
+ "observation_space": {
25
+ ":type:": "<class 'gym.spaces.dict.Dict'>",
26
+ ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu",
27
+ "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])",
28
+ "_shape": null,
29
+ "dtype": null,
30
+ "_np_random": null
31
+ },
32
+ "action_space": {
33
+ ":type:": "<class 'gym.spaces.box.Box'>",
34
+ ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==",
35
+ "dtype": "float32",
36
+ "_shape": [
37
+ 3
38
+ ],
39
+ "low": "[-1. -1. -1.]",
40
+ "high": "[1. 1. 1.]",
41
+ "bounded_below": "[ True True True]",
42
+ "bounded_above": "[ True True True]",
43
+ "_np_random": null
44
+ },
45
+ "n_envs": 4,
46
+ "num_timesteps": 1000000,
47
+ "_total_timesteps": 1000000.0,
48
+ "_num_timesteps_at_start": 0,
49
+ "seed": null,
50
+ "action_noise": null,
51
+ "start_time": 1674051484400769539,
52
+ "learning_rate": 0.00096,
53
+ "tensorboard_log": null,
54
+ "lr_schedule": {
55
+ ":type:": "<class 'function'>",
56
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
57
+ },
58
+ "_last_obs": {
59
+ ":type:": "<class 'collections.OrderedDict'>",
60
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAuvnWPq5YM7vQNSs/uvnWPq5YM7vQNSs/uvnWPq5YM7vQNSs/uvnWPq5YM7vQNSs/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAHxHAvSm4jz+5ww2/Azq3vs+QLD/fBwG/BkDDv9iNzD8Vrdk/Nf//vlG6nL/n9Qq8lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAC6+dY+rlgzu9A1Kz/hpXw9UDToOjQsiz26+dY+rlgzu9A1Kz/hpXw9UDToOjQsiz26+dY+rlgzu9A1Kz/hpXw9UDToOjQsiz26+dY+rlgzu9A1Kz/hpXw9UDToOjQsiz2UaA5LBEsGhpRoEnSUUpR1Lg==",
61
+ "achieved_goal": "[[ 0.419874 -0.00273661 0.66878986]\n [ 0.419874 -0.00273661 0.66878986]\n [ 0.419874 -0.00273661 0.66878986]\n [ 0.419874 -0.00273661 0.66878986]]",
62
+ "desired_goal": "[[-0.09378266 1.1228076 -0.55376774]\n [-0.35786447 0.6740846 -0.50402635]\n [-1.5253913 1.5980787 1.7005945 ]\n [-0.49999395 -1.2244359 -0.00848148]]",
63
+ "observation": "[[ 0.419874 -0.00273661 0.66878986 0.06168163 0.00177158 0.0679554 ]\n [ 0.419874 -0.00273661 0.66878986 0.06168163 0.00177158 0.0679554 ]\n [ 0.419874 -0.00273661 0.66878986 0.06168163 0.00177158 0.0679554 ]\n [ 0.419874 -0.00273661 0.66878986 0.06168163 0.00177158 0.0679554 ]]"
64
+ },
65
+ "_last_episode_starts": {
66
+ ":type:": "<class 'numpy.ndarray'>",
67
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
68
+ },
69
+ "_last_original_obs": {
70
+ ":type:": "<class 'collections.OrderedDict'>",
71
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAg80KPrO67LvsJ38+SwMTPj/10bwljS4+j8isPeE9pLzzuhI+Ooilvcqp3z3KdYQ+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
72
+ "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
73
+ "desired_goal": "[[ 0.13554959 -0.0072244 0.24917573]\n [ 0.14356725 -0.02562964 0.1704603 ]\n [ 0.08436691 -0.02004904 0.14329128]\n [-0.08082624 0.10921057 0.25871116]]",
74
+ "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
75
+ },
76
+ "_episode_num": 0,
77
+ "use_sde": true,
78
+ "sde_sample_freq": -1,
79
+ "_current_progress_remaining": 0.0,
80
+ "ep_info_buffer": {
81
+ ":type:": "<class 'collections.deque'>",
82
+ ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMId700RYDT37+UhpRSlIwBbJRLMowBdJRHQKVvviPyTZB1fZQoaAZoCWgPQwjItDaN7TXhv5SGlFKUaBVLMmgWR0Clb34vexfOdX2UKGgGaAloD0MIxXJLqyFx0r+UhpRSlGgVSzJoFkdApW8++RHPNXV9lChoBmgJaA9DCLwH6L6c2eG/lIaUUpRoFUsyaBZHQKVvAIi1Rch1fZQoaAZoCWgPQwjwayQJwpXgv5SGlFKUaBVLMmgWR0ClcN9Aood/dX2UKGgGaAloD0MIu/JZngd307+UhpRSlGgVSzJoFkdApXCfkBCD3HV9lChoBmgJaA9DCLKbGf1oOOW/lIaUUpRoFUsyaBZHQKVwYR3/xUh1fZQoaAZoCWgPQwgzG2SSkTPhv5SGlFKUaBVLMmgWR0ClcCMK1G9YdX2UKGgGaAloD0MIEcMOY9Lf3L+UhpRSlGgVSzJoFkdApXHt09yLh3V9lChoBmgJaA9DCJlKP+Hs1uC/lIaUUpRoFUsyaBZHQKVxrdweeWh1fZQoaAZoCWgPQwhzEd+JWS/jv5SGlFKUaBVLMmgWR0ClcW8YIjW1dX2UKGgGaAloD0MIfSB551AG5b+UhpRSlGgVSzJoFkdApXEw1FYuCnV9lChoBmgJaA9DCEdYVMTpJN+/lIaUUpRoFUsyaBZHQKVzAuyu6mR1fZQoaAZoCWgPQwjcSq/NxkrOv5SGlFKUaBVLMmgWR0ClcsQHzH0cdX2UKGgGaAloD0MI2lTdI5ur4r+UhpRSlGgVSzJoFkdApXKFmrbQC3V9lChoBmgJaA9DCNmY1xGHbNK/lIaUUpRoFUsyaBZHQKVySAq/dqN1fZQoaAZoCWgPQwiYNEbrqGrov5SGlFKUaBVLMmgWR0CldAr2YfGNdX2UKGgGaAloD0MIIt+l1CVj4L+UhpRSlGgVSzJoFkdApXPK1Vo6CHV9lChoBmgJaA9DCK4tPC8VG9O/lIaUUpRoFUsyaBZHQKVzi580DU51fZQoaAZoCWgPQwiQ9GkV/aHVv5SGlFKUaBVLMmgWR0Clc00pd8iOdX2UKGgGaAloD0MINEjBU8gV4L+UhpRSlGgVSzJoFkdApXUgnUlRg3V9lChoBmgJaA9DCNpYiXlW0uC/lIaUUpRoFUsyaBZHQKV04NPxhDx1fZQoaAZoCWgPQwiSPq2iPzTdv5SGlFKUaBVLMmgWR0CldKHXVbzLdX2UKGgGaAloD0MI1HyVfOwu3b+UhpRSlGgVSzJoFkdApXRj1ZkkKXV9lChoBmgJaA9DCMy209aIYOC/lIaUUpRoFUsyaBZHQKV2Tzwtrbh1fZQoaAZoCWgPQwj7IMuCiT/qv5SGlFKUaBVLMmgWR0Cldg9GRV6vdX2UKGgGaAloD0MIN8ZOeAlO57+UhpRSlGgVSzJoFkdApXXRC8e0X3V9lChoBmgJaA9DCGAfnbryWd+/lIaUUpRoFUsyaBZHQKV1ktGNJe51fZQoaAZoCWgPQwjNHf0v16Lev5SGlFKUaBVLMmgWR0Cld1dC3PRidX2UKGgGaAloD0MIE7afjPFhyL+UhpRSlGgVSzJoFkdApXcXzpX6qXV9lChoBmgJaA9DCNJT5BBxc8i/lIaUUpRoFUsyaBZHQKV22NuLrHF1fZQoaAZoCWgPQwjMs5JWfEPfv5SGlFKUaBVLMmgWR0Cldpp6Y3NtdX2UKGgGaAloD0MIYcWp1sIs5r+UhpRSlGgVSzJoFkdApXiA8IRh+nV9lChoBmgJaA9DCDkmi/uPTOa/lIaUUpRoFUsyaBZHQKV4QLronrp1fZQoaAZoCWgPQwj2DOGYZU/Kv5SGlFKUaBVLMmgWR0CleAF6Z6UrdX2UKGgGaAloD0MIpgnbT8b43r+UhpRSlGgVSzJoFkdApXfC/TLGJnV9lChoBmgJaA9DCPJCOjyE8de/lIaUUpRoFUsyaBZHQKV5k/jbSJF1fZQoaAZoCWgPQwjHL7yS5Lnov5SGlFKUaBVLMmgWR0CleVPzOHFhdX2UKGgGaAloD0MIOC9OfLWj2r+UhpRSlGgVSzJoFkdApXkU4o7V8XV9lChoBmgJaA9DCHBh3Xh35Oe/lIaUUpRoFUsyaBZHQKV41p+MIeJ1fZQoaAZoCWgPQwg9KChFK/fUv5SGlFKUaBVLMmgWR0Clepa9CeEqdX2UKGgGaAloD0MI9zsUBfpE2r+UhpRSlGgVSzJoFkdApXpWrlvIfnV9lChoBmgJaA9DCI7qdCDrqdG/lIaUUpRoFUsyaBZHQKV6F3hXKbN1fZQoaAZoCWgPQwhJSKRt/InXv5SGlFKUaBVLMmgWR0CledlsHjZMdX2UKGgGaAloD0MIILJIE+8A5L+UhpRSlGgVSzJoFkdApXup7u2JBXV9lChoBmgJaA9DCIygMZOoF+G/lIaUUpRoFUsyaBZHQKV7ae8PFvR1fZQoaAZoCWgPQwgP1ZRkHQ7jv5SGlFKUaBVLMmgWR0CleyrVvuPWdX2UKGgGaAloD0MIkIR9O4kI1b+UhpRSlGgVSzJoFkdApXrsdPtUoHV9lChoBmgJaA9DCNxHbk26Lcm/lIaUUpRoFUsyaBZHQKV8tPnjhk11fZQoaAZoCWgPQwh72uGvyRrYv5SGlFKUaBVLMmgWR0ClfHTaTOgQdX2UKGgGaAloD0MIQ8U4fxMK0r+UhpRSlGgVSzJoFkdApXw11U2kz3V9lChoBmgJaA9DCEktlExO7dq/lIaUUpRoFUsyaBZHQKV79+BH09R1fZQoaAZoCWgPQwhsdw/QfTnov5SGlFKUaBVLMmgWR0Clfc6WHDaXdX2UKGgGaAloD0MIPQrXo3A93r+UhpRSlGgVSzJoFkdApX2On0kGA3V9lChoBmgJaA9DCDdwB+qUR9y/lIaUUpRoFUsyaBZHQKV9T7dBSk11fZQoaAZoCWgPQwiAn3HhQMjhv5SGlFKUaBVLMmgWR0ClfRHAZbY9dX2UKGgGaAloD0MIXoHoSZlU4r+UhpRSlGgVSzJoFkdApX7uWUr08XV9lChoBmgJaA9DCIWzW8tkOOW/lIaUUpRoFUsyaBZHQKV+rmKZUkx1fZQoaAZoCWgPQwheud42UyHov5SGlFKUaBVLMmgWR0Clfm+FDfFadX2UKGgGaAloD0MIsrrVc9L74L+UhpRSlGgVSzJoFkdApX4xQcghbHV9lChoBmgJaA9DCImYEkn0Mt2/lIaUUpRoFUsyaBZHQKWACcx0uDl1fZQoaAZoCWgPQwi+vtalRmjjv5SGlFKUaBVLMmgWR0Clf8n+yZ8bdX2UKGgGaAloD0MIMXxETImk5L+UhpRSlGgVSzJoFkdApX+K4MF2V3V9lChoBmgJaA9DCF34wfnUseK/lIaUUpRoFUsyaBZHQKV/TW+49X91fZQoaAZoCWgPQwjNI38w8NzUv5SGlFKUaBVLMmgWR0ClgRzk6tDEdX2UKGgGaAloD0MISP5g4Ln33L+UhpRSlGgVSzJoFkdApYDc5CF9KHV9lChoBmgJaA9DCLQAbatZZ9K/lIaUUpRoFUsyaBZHQKWAnb+tKZl1fZQoaAZoCWgPQwjt9IO6SKHfv5SGlFKUaBVLMmgWR0ClgF9VvMr3dX2UKGgGaAloD0MIEqPnFroS3b+UhpRSlGgVSzJoFkdApYI0KsuFpXV9lChoBmgJaA9DCJIf8SvWcM+/lIaUUpRoFUsyaBZHQKWB9FSbYsd1fZQoaAZoCWgPQwixicxc4PLlv5SGlFKUaBVLMmgWR0ClgbVPepGXdX2UKGgGaAloD0MIq5MzFHe82L+UhpRSlGgVSzJoFkdApYF3hQ3xWnV9lChoBmgJaA9DCAHg2LPnMta/lIaUUpRoFUsyaBZHQKWDP6fJ3gV1fZQoaAZoCWgPQwiGx34WS5Hhv5SGlFKUaBVLMmgWR0Clgv+vpyIYdX2UKGgGaAloD0MIjL/tCRLb3L+UhpRSlGgVSzJoFkdApYLAl+mWMXV9lChoBmgJaA9DCBgFwePbO+S/lIaUUpRoFUsyaBZHQKWCgoOQQtl1fZQoaAZoCWgPQwjSNCiaB7Div5SGlFKUaBVLMmgWR0ClhGPrGBFvdX2UKGgGaAloD0MItVAyObWz5r+UhpRSlGgVSzJoFkdApYQj/EOy3XV9lChoBmgJaA9DCIMWEjC6vN6/lIaUUpRoFUsyaBZHQKWD5N8ma6V1fZQoaAZoCWgPQwg1uK0tPK/mv5SGlFKUaBVLMmgWR0Clg6bNbC79dX2UKGgGaAloD0MIehfvx+0X77+UhpRSlGgVSzJoFkdApYWPsRg7YHV9lChoBmgJaA9DCNsWZTbIpOG/lIaUUpRoFUsyaBZHQKWFT93r2QJ1fZQoaAZoCWgPQwjx2M9iKRLmv5SGlFKUaBVLMmgWR0ClhRDbi6xxdX2UKGgGaAloD0MIZk8Cm3Pw4b+UhpRSlGgVSzJoFkdApYTSfthNNHV9lChoBmgJaA9DCLyzdtuFpvO/lIaUUpRoFUsyaBZHQKWGpqrzXjF1fZQoaAZoCWgPQwjtgOuKGSHxv5SGlFKUaBVLMmgWR0ClhmbQswtbdX2UKGgGaAloD0MINGYS9YLP5b+UhpRSlGgVSzJoFkdApYYoGKQ7tHV9lChoBmgJaA9DCJHUQsnk1O+/lIaUUpRoFUsyaBZHQKWF6ktVaOh1fZQoaAZoCWgPQwgouFhRg+njv5SGlFKUaBVLMmgWR0Clh7JwS8J2dX2UKGgGaAloD0MIVK2FWWhn47+UhpRSlGgVSzJoFkdApYdybnX/YXV9lChoBmgJaA9DCNaQuMfSB+O/lIaUUpRoFUsyaBZHQKWHM3n6l+F1fZQoaAZoCWgPQwh4RIXq5mLyv5SGlFKUaBVLMmgWR0ClhvVc2R7rdX2UKGgGaAloD0MIK4cW2c534b+UhpRSlGgVSzJoFkdApYjBFkQPJHV9lChoBmgJaA9DCJyHE5hO6+G/lIaUUpRoFUsyaBZHQKWIgUPhAGB1fZQoaAZoCWgPQwheY5eo3hrqv5SGlFKUaBVLMmgWR0CliEIxQBPsdX2UKGgGaAloD0MIxy5RvTWw4r+UhpRSlGgVSzJoFkdApYgDu6VdHHV9lChoBmgJaA9DCEyqtpvgm+e/lIaUUpRoFUsyaBZHQKWJ1+FUQ051fZQoaAZoCWgPQwgSUOEIUinSv5SGlFKUaBVLMmgWR0CliZfOUt7KdX2UKGgGaAloD0MIp7Io7KIo9b+UhpRSlGgVSzJoFkdApYlYt+TePHV9lChoBmgJaA9DCGCsb2Byo+G/lIaUUpRoFUsyaBZHQKWJGlBQemx1ZS4="
83
+ },
84
+ "ep_success_buffer": {
85
+ ":type:": "<class 'collections.deque'>",
86
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
87
+ },
88
+ "_n_updates": 31250,
89
+ "n_steps": 8,
90
+ "gamma": 0.99,
91
+ "gae_lambda": 0.9,
92
+ "ent_coef": 0.0,
93
+ "vf_coef": 0.4,
94
+ "max_grad_norm": 0.5,
95
+ "normalize_advantage": false
96
+ }
a2c-PandaReachDense-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:24adcbfe8581e13b73454053252047b31f0d1c216f9b9d198355c98e29a9fc19
3
+ size 45438
a2c-PandaReachDense-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d929fa5fcc563a3b51b8fc16bcf9b8a726608fc2756e74161ef9948afbd28470
3
+ size 46718
a2c-PandaReachDense-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
a2c-PandaReachDense-v2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.8.10
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 1.13.1+cu116
5
+ - GPU Enabled: True
6
+ - Numpy: 1.21.6
7
+ - Gym: 0.21.0
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7fb1c161e820>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fb1c1620300>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 1000000, "_total_timesteps": 1000000.0, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1674051484400769539, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAuvnWPq5YM7vQNSs/uvnWPq5YM7vQNSs/uvnWPq5YM7vQNSs/uvnWPq5YM7vQNSs/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAHxHAvSm4jz+5ww2/Azq3vs+QLD/fBwG/BkDDv9iNzD8Vrdk/Nf//vlG6nL/n9Qq8lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAC6+dY+rlgzu9A1Kz/hpXw9UDToOjQsiz26+dY+rlgzu9A1Kz/hpXw9UDToOjQsiz26+dY+rlgzu9A1Kz/hpXw9UDToOjQsiz26+dY+rlgzu9A1Kz/hpXw9UDToOjQsiz2UaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 0.419874 -0.00273661 0.66878986]\n [ 0.419874 -0.00273661 0.66878986]\n [ 0.419874 -0.00273661 0.66878986]\n [ 0.419874 -0.00273661 0.66878986]]", "desired_goal": "[[-0.09378266 1.1228076 -0.55376774]\n [-0.35786447 0.6740846 -0.50402635]\n [-1.5253913 1.5980787 1.7005945 ]\n [-0.49999395 -1.2244359 -0.00848148]]", "observation": "[[ 0.419874 -0.00273661 0.66878986 0.06168163 0.00177158 0.0679554 ]\n [ 0.419874 -0.00273661 0.66878986 0.06168163 0.00177158 0.0679554 ]\n [ 0.419874 -0.00273661 0.66878986 0.06168163 0.00177158 0.0679554 ]\n [ 0.419874 -0.00273661 0.66878986 0.06168163 0.00177158 0.0679554 ]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAg80KPrO67LvsJ38+SwMTPj/10bwljS4+j8isPeE9pLzzuhI+Ooilvcqp3z3KdYQ+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[ 0.13554959 -0.0072244 0.24917573]\n [ 0.14356725 -0.02562964 0.1704603 ]\n [ 0.08436691 -0.02004904 0.14329128]\n [-0.08082624 0.10921057 0.25871116]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMId700RYDT37+UhpRSlIwBbJRLMowBdJRHQKVvviPyTZB1fZQoaAZoCWgPQwjItDaN7TXhv5SGlFKUaBVLMmgWR0Clb34vexfOdX2UKGgGaAloD0MIxXJLqyFx0r+UhpRSlGgVSzJoFkdApW8++RHPNXV9lChoBmgJaA9DCLwH6L6c2eG/lIaUUpRoFUsyaBZHQKVvAIi1Rch1fZQoaAZoCWgPQwjwayQJwpXgv5SGlFKUaBVLMmgWR0ClcN9Aood/dX2UKGgGaAloD0MIu/JZngd307+UhpRSlGgVSzJoFkdApXCfkBCD3HV9lChoBmgJaA9DCLKbGf1oOOW/lIaUUpRoFUsyaBZHQKVwYR3/xUh1fZQoaAZoCWgPQwgzG2SSkTPhv5SGlFKUaBVLMmgWR0ClcCMK1G9YdX2UKGgGaAloD0MIEcMOY9Lf3L+UhpRSlGgVSzJoFkdApXHt09yLh3V9lChoBmgJaA9DCJlKP+Hs1uC/lIaUUpRoFUsyaBZHQKVxrdweeWh1fZQoaAZoCWgPQwhzEd+JWS/jv5SGlFKUaBVLMmgWR0ClcW8YIjW1dX2UKGgGaAloD0MIfSB551AG5b+UhpRSlGgVSzJoFkdApXEw1FYuCnV9lChoBmgJaA9DCEdYVMTpJN+/lIaUUpRoFUsyaBZHQKVzAuyu6mR1fZQoaAZoCWgPQwjcSq/NxkrOv5SGlFKUaBVLMmgWR0ClcsQHzH0cdX2UKGgGaAloD0MI2lTdI5ur4r+UhpRSlGgVSzJoFkdApXKFmrbQC3V9lChoBmgJaA9DCNmY1xGHbNK/lIaUUpRoFUsyaBZHQKVySAq/dqN1fZQoaAZoCWgPQwiYNEbrqGrov5SGlFKUaBVLMmgWR0CldAr2YfGNdX2UKGgGaAloD0MIIt+l1CVj4L+UhpRSlGgVSzJoFkdApXPK1Vo6CHV9lChoBmgJaA9DCK4tPC8VG9O/lIaUUpRoFUsyaBZHQKVzi580DU51fZQoaAZoCWgPQwiQ9GkV/aHVv5SGlFKUaBVLMmgWR0Clc00pd8iOdX2UKGgGaAloD0MINEjBU8gV4L+UhpRSlGgVSzJoFkdApXUgnUlRg3V9lChoBmgJaA9DCNpYiXlW0uC/lIaUUpRoFUsyaBZHQKV04NPxhDx1fZQoaAZoCWgPQwiSPq2iPzTdv5SGlFKUaBVLMmgWR0CldKHXVbzLdX2UKGgGaAloD0MI1HyVfOwu3b+UhpRSlGgVSzJoFkdApXRj1ZkkKXV9lChoBmgJaA9DCMy209aIYOC/lIaUUpRoFUsyaBZHQKV2Tzwtrbh1fZQoaAZoCWgPQwj7IMuCiT/qv5SGlFKUaBVLMmgWR0Cldg9GRV6vdX2UKGgGaAloD0MIN8ZOeAlO57+UhpRSlGgVSzJoFkdApXXRC8e0X3V9lChoBmgJaA9DCGAfnbryWd+/lIaUUpRoFUsyaBZHQKV1ktGNJe51fZQoaAZoCWgPQwjNHf0v16Lev5SGlFKUaBVLMmgWR0Cld1dC3PRidX2UKGgGaAloD0MIE7afjPFhyL+UhpRSlGgVSzJoFkdApXcXzpX6qXV9lChoBmgJaA9DCNJT5BBxc8i/lIaUUpRoFUsyaBZHQKV22NuLrHF1fZQoaAZoCWgPQwjMs5JWfEPfv5SGlFKUaBVLMmgWR0Cldpp6Y3NtdX2UKGgGaAloD0MIYcWp1sIs5r+UhpRSlGgVSzJoFkdApXiA8IRh+nV9lChoBmgJaA9DCDkmi/uPTOa/lIaUUpRoFUsyaBZHQKV4QLronrp1fZQoaAZoCWgPQwj2DOGYZU/Kv5SGlFKUaBVLMmgWR0CleAF6Z6UrdX2UKGgGaAloD0MIpgnbT8b43r+UhpRSlGgVSzJoFkdApXfC/TLGJnV9lChoBmgJaA9DCPJCOjyE8de/lIaUUpRoFUsyaBZHQKV5k/jbSJF1fZQoaAZoCWgPQwjHL7yS5Lnov5SGlFKUaBVLMmgWR0CleVPzOHFhdX2UKGgGaAloD0MIOC9OfLWj2r+UhpRSlGgVSzJoFkdApXkU4o7V8XV9lChoBmgJaA9DCHBh3Xh35Oe/lIaUUpRoFUsyaBZHQKV41p+MIeJ1fZQoaAZoCWgPQwg9KChFK/fUv5SGlFKUaBVLMmgWR0Clepa9CeEqdX2UKGgGaAloD0MI9zsUBfpE2r+UhpRSlGgVSzJoFkdApXpWrlvIfnV9lChoBmgJaA9DCI7qdCDrqdG/lIaUUpRoFUsyaBZHQKV6F3hXKbN1fZQoaAZoCWgPQwhJSKRt/InXv5SGlFKUaBVLMmgWR0CledlsHjZMdX2UKGgGaAloD0MIILJIE+8A5L+UhpRSlGgVSzJoFkdApXup7u2JBXV9lChoBmgJaA9DCIygMZOoF+G/lIaUUpRoFUsyaBZHQKV7ae8PFvR1fZQoaAZoCWgPQwgP1ZRkHQ7jv5SGlFKUaBVLMmgWR0CleyrVvuPWdX2UKGgGaAloD0MIkIR9O4kI1b+UhpRSlGgVSzJoFkdApXrsdPtUoHV9lChoBmgJaA9DCNxHbk26Lcm/lIaUUpRoFUsyaBZHQKV8tPnjhk11fZQoaAZoCWgPQwh72uGvyRrYv5SGlFKUaBVLMmgWR0ClfHTaTOgQdX2UKGgGaAloD0MIQ8U4fxMK0r+UhpRSlGgVSzJoFkdApXw11U2kz3V9lChoBmgJaA9DCEktlExO7dq/lIaUUpRoFUsyaBZHQKV79+BH09R1fZQoaAZoCWgPQwhsdw/QfTnov5SGlFKUaBVLMmgWR0Clfc6WHDaXdX2UKGgGaAloD0MIPQrXo3A93r+UhpRSlGgVSzJoFkdApX2On0kGA3V9lChoBmgJaA9DCDdwB+qUR9y/lIaUUpRoFUsyaBZHQKV9T7dBSk11fZQoaAZoCWgPQwiAn3HhQMjhv5SGlFKUaBVLMmgWR0ClfRHAZbY9dX2UKGgGaAloD0MIXoHoSZlU4r+UhpRSlGgVSzJoFkdApX7uWUr08XV9lChoBmgJaA9DCIWzW8tkOOW/lIaUUpRoFUsyaBZHQKV+rmKZUkx1fZQoaAZoCWgPQwheud42UyHov5SGlFKUaBVLMmgWR0Clfm+FDfFadX2UKGgGaAloD0MIsrrVc9L74L+UhpRSlGgVSzJoFkdApX4xQcghbHV9lChoBmgJaA9DCImYEkn0Mt2/lIaUUpRoFUsyaBZHQKWACcx0uDl1fZQoaAZoCWgPQwi+vtalRmjjv5SGlFKUaBVLMmgWR0Clf8n+yZ8bdX2UKGgGaAloD0MIMXxETImk5L+UhpRSlGgVSzJoFkdApX+K4MF2V3V9lChoBmgJaA9DCF34wfnUseK/lIaUUpRoFUsyaBZHQKV/TW+49X91fZQoaAZoCWgPQwjNI38w8NzUv5SGlFKUaBVLMmgWR0ClgRzk6tDEdX2UKGgGaAloD0MISP5g4Ln33L+UhpRSlGgVSzJoFkdApYDc5CF9KHV9lChoBmgJaA9DCLQAbatZZ9K/lIaUUpRoFUsyaBZHQKWAnb+tKZl1fZQoaAZoCWgPQwjt9IO6SKHfv5SGlFKUaBVLMmgWR0ClgF9VvMr3dX2UKGgGaAloD0MIEqPnFroS3b+UhpRSlGgVSzJoFkdApYI0KsuFpXV9lChoBmgJaA9DCJIf8SvWcM+/lIaUUpRoFUsyaBZHQKWB9FSbYsd1fZQoaAZoCWgPQwixicxc4PLlv5SGlFKUaBVLMmgWR0ClgbVPepGXdX2UKGgGaAloD0MIq5MzFHe82L+UhpRSlGgVSzJoFkdApYF3hQ3xWnV9lChoBmgJaA9DCAHg2LPnMta/lIaUUpRoFUsyaBZHQKWDP6fJ3gV1fZQoaAZoCWgPQwiGx34WS5Hhv5SGlFKUaBVLMmgWR0Clgv+vpyIYdX2UKGgGaAloD0MIjL/tCRLb3L+UhpRSlGgVSzJoFkdApYLAl+mWMXV9lChoBmgJaA9DCBgFwePbO+S/lIaUUpRoFUsyaBZHQKWCgoOQQtl1fZQoaAZoCWgPQwjSNCiaB7Div5SGlFKUaBVLMmgWR0ClhGPrGBFvdX2UKGgGaAloD0MItVAyObWz5r+UhpRSlGgVSzJoFkdApYQj/EOy3XV9lChoBmgJaA9DCIMWEjC6vN6/lIaUUpRoFUsyaBZHQKWD5N8ma6V1fZQoaAZoCWgPQwg1uK0tPK/mv5SGlFKUaBVLMmgWR0Clg6bNbC79dX2UKGgGaAloD0MIehfvx+0X77+UhpRSlGgVSzJoFkdApYWPsRg7YHV9lChoBmgJaA9DCNsWZTbIpOG/lIaUUpRoFUsyaBZHQKWFT93r2QJ1fZQoaAZoCWgPQwjx2M9iKRLmv5SGlFKUaBVLMmgWR0ClhRDbi6xxdX2UKGgGaAloD0MIZk8Cm3Pw4b+UhpRSlGgVSzJoFkdApYTSfthNNHV9lChoBmgJaA9DCLyzdtuFpvO/lIaUUpRoFUsyaBZHQKWGpqrzXjF1fZQoaAZoCWgPQwjtgOuKGSHxv5SGlFKUaBVLMmgWR0ClhmbQswtbdX2UKGgGaAloD0MINGYS9YLP5b+UhpRSlGgVSzJoFkdApYYoGKQ7tHV9lChoBmgJaA9DCJHUQsnk1O+/lIaUUpRoFUsyaBZHQKWF6ktVaOh1fZQoaAZoCWgPQwgouFhRg+njv5SGlFKUaBVLMmgWR0Clh7JwS8J2dX2UKGgGaAloD0MIVK2FWWhn47+UhpRSlGgVSzJoFkdApYdybnX/YXV9lChoBmgJaA9DCNaQuMfSB+O/lIaUUpRoFUsyaBZHQKWHM3n6l+F1fZQoaAZoCWgPQwh4RIXq5mLyv5SGlFKUaBVLMmgWR0ClhvVc2R7rdX2UKGgGaAloD0MIK4cW2c534b+UhpRSlGgVSzJoFkdApYjBFkQPJHV9lChoBmgJaA9DCJyHE5hO6+G/lIaUUpRoFUsyaBZHQKWIgUPhAGB1fZQoaAZoCWgPQwheY5eo3hrqv5SGlFKUaBVLMmgWR0CliEIxQBPsdX2UKGgGaAloD0MIxy5RvTWw4r+UhpRSlGgVSzJoFkdApYgDu6VdHHV9lChoBmgJaA9DCEyqtpvgm+e/lIaUUpRoFUsyaBZHQKWJ1+FUQ051fZQoaAZoCWgPQwgSUOEIUinSv5SGlFKUaBVLMmgWR0CliZfOUt7KdX2UKGgGaAloD0MIp7Io7KIo9b+UhpRSlGgVSzJoFkdApYlYt+TePHV9lChoBmgJaA9DCGCsb2Byo+G/lIaUUpRoFUsyaBZHQKWJGlBQemx1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 31250, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
replay.mp4 ADDED
Binary file (302 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": -0.8025492054177448, "std_reward": 0.251949633647808, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-01-18T15:14:20.253765"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:aebfc6eae9b715c8abd5d56e2484a6ac4590712a63882ac8363996159999489b
3
+ size 3212