Upload utils.py
Browse files
utils.py
ADDED
@@ -0,0 +1,589 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch.nn as nn
|
2 |
+
from transformers.models.gpt2.modeling_gpt2 import GPT2Attention, GPT2MLP
|
3 |
+
from typing import Optional, Tuple, Union, List
|
4 |
+
from transformers import GPT2LMHeadModel
|
5 |
+
import torch
|
6 |
+
from transformers.deepspeed import is_deepspeed_zero3_enabled
|
7 |
+
from transformers.generation.logits_process import LogitsProcessorList
|
8 |
+
from transformers.generation.stopping_criteria import StoppingCriteriaList
|
9 |
+
from transformers.generation.utils import GreedySearchOutput, GreedySearchEncoderDecoderOutput, BeamSearchOutput, BeamSearchEncoderDecoderOutput
|
10 |
+
from transformers.generation.beam_search import BeamScorer
|
11 |
+
|
12 |
+
|
13 |
+
class _GPT2LMHeadModel(GPT2LMHeadModel):
|
14 |
+
def _init_(self, config):
|
15 |
+
super(GPT2LMHeadModel, self).init_(config)
|
16 |
+
self.config = config
|
17 |
+
|
18 |
+
|
19 |
+
def prepare_inputs_for_generation(self, input_ids, past_key_values=None, encoder_outputs=None, **kwargs):
|
20 |
+
'''
|
21 |
+
This function is an edited version of the prepare_inputs_for_generation function from HuggingFace's transformers
|
22 |
+
https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt2/modeling_gpt2.py
|
23 |
+
'''
|
24 |
+
token_type_ids = kwargs.get("token_type_ids", None)
|
25 |
+
# only last token for inputs_ids if past is defined in kwargs
|
26 |
+
if past_key_values:
|
27 |
+
input_ids = input_ids[:, -1].unsqueeze(-1)
|
28 |
+
if token_type_ids is not None:
|
29 |
+
token_type_ids = token_type_ids[:, -1].unsqueeze(-1)
|
30 |
+
|
31 |
+
attention_mask = kwargs.get("attention_mask", None)
|
32 |
+
position_ids = kwargs.get("position_ids", None)
|
33 |
+
if self.config.prot2text_version=="1.1" or self.config.prot2text_version=="1.2":
|
34 |
+
encoder_attention_mask = kwargs.get("encoder_attention_mask", None)
|
35 |
+
elif self.config.prot2text_version=="1.0":
|
36 |
+
encoder_attention_mask = None
|
37 |
+
|
38 |
+
if attention_mask is not None and position_ids is None:
|
39 |
+
position_ids = attention_mask.long().cumsum(-1) - 1
|
40 |
+
position_ids.masked_fill_(attention_mask == 0, 1)
|
41 |
+
if past_key_values:
|
42 |
+
position_ids = position_ids[:, -1].unsqueeze(-1)
|
43 |
+
else:
|
44 |
+
position_ids = None
|
45 |
+
|
46 |
+
model_specific_kwargs = {
|
47 |
+
"encoder_hidden_states": encoder_outputs['hidden_states'],
|
48 |
+
}
|
49 |
+
|
50 |
+
return {
|
51 |
+
"input_ids": input_ids,
|
52 |
+
"past_key_values": past_key_values,
|
53 |
+
"use_cache": kwargs.get("use_cache"),
|
54 |
+
"position_ids": position_ids,
|
55 |
+
"attention_mask": attention_mask,
|
56 |
+
"token_type_ids": token_type_ids,
|
57 |
+
"encoder_attention_mask": encoder_attention_mask,
|
58 |
+
**model_specific_kwargs
|
59 |
+
}
|
60 |
+
|
61 |
+
|
62 |
+
def greedy_search(
|
63 |
+
self,
|
64 |
+
input_ids: torch.LongTensor,
|
65 |
+
logits_processor: Optional[LogitsProcessorList] = None,
|
66 |
+
stopping_criteria: Optional[StoppingCriteriaList] = None,
|
67 |
+
max_length: Optional[int] = None,
|
68 |
+
pad_token_id: Optional[int] = None,
|
69 |
+
eos_token_id: Optional[Union[int, List[int]]] = None,
|
70 |
+
output_attentions: Optional[bool] = None,
|
71 |
+
output_hidden_states: Optional[bool] = None,
|
72 |
+
output_scores: Optional[bool] = None,
|
73 |
+
return_dict_in_generate: Optional[bool] = None,
|
74 |
+
synced_gpus: bool = False,
|
75 |
+
streamer: Optional["BaseStreamer"] = None,
|
76 |
+
**model_kwargs,
|
77 |
+
) -> Union[GreedySearchOutput, torch.LongTensor]:
|
78 |
+
'''
|
79 |
+
This function is an edited version of the greedy_search function from HuggingFace's transformers
|
80 |
+
https://github.com/huggingface/transformers/blob/main/src/transformers/generation/utils.py
|
81 |
+
'''
|
82 |
+
|
83 |
+
# init values
|
84 |
+
logits_processor = logits_processor if logits_processor is not None else LogitsProcessorList()
|
85 |
+
stopping_criteria = stopping_criteria if stopping_criteria is not None else StoppingCriteriaList()
|
86 |
+
if max_length is not None:
|
87 |
+
warnings.warn(
|
88 |
+
"`max_length` is deprecated in this function, use"
|
89 |
+
" `stopping_criteria=StoppingCriteriaList([MaxLengthCriteria(max_length=max_length)])` instead.",
|
90 |
+
UserWarning,
|
91 |
+
)
|
92 |
+
stopping_criteria = validate_stopping_criteria(stopping_criteria, max_length)
|
93 |
+
pad_token_id = pad_token_id if pad_token_id is not None else self.generation_config.pad_token_id
|
94 |
+
eos_token_id = eos_token_id if eos_token_id is not None else self.generation_config.eos_token_id
|
95 |
+
if isinstance(eos_token_id, int):
|
96 |
+
eos_token_id = [eos_token_id]
|
97 |
+
eos_token_id_tensor = torch.tensor(eos_token_id).to(input_ids.device) if eos_token_id is not None else None
|
98 |
+
output_scores = output_scores if output_scores is not None else self.generation_config.output_scores
|
99 |
+
output_attentions = (
|
100 |
+
output_attentions if output_attentions is not None else self.generation_config.output_attentions
|
101 |
+
)
|
102 |
+
output_hidden_states = (
|
103 |
+
output_hidden_states if output_hidden_states is not None else self.generation_config.output_hidden_states
|
104 |
+
)
|
105 |
+
return_dict_in_generate = (
|
106 |
+
return_dict_in_generate
|
107 |
+
if return_dict_in_generate is not None
|
108 |
+
else self.generation_config.return_dict_in_generate
|
109 |
+
)
|
110 |
+
|
111 |
+
# init attention / hidden states / scores tuples
|
112 |
+
scores = () if (return_dict_in_generate and output_scores) else None
|
113 |
+
decoder_attentions = () if (return_dict_in_generate and output_attentions) else None
|
114 |
+
cross_attentions = () if (return_dict_in_generate and output_attentions) else None
|
115 |
+
decoder_hidden_states = () if (return_dict_in_generate and output_hidden_states) else None
|
116 |
+
|
117 |
+
# if model is an encoder-decoder, retrieve encoder attention weights and hidden states
|
118 |
+
if return_dict_in_generate and self.config.is_encoder_decoder:
|
119 |
+
encoder_attentions = model_kwargs["encoder_outputs"].get("attentions") if output_attentions else None
|
120 |
+
encoder_hidden_states = (
|
121 |
+
model_kwargs["encoder_outputs"].get("hidden_states") if output_hidden_states else None
|
122 |
+
)
|
123 |
+
|
124 |
+
# keep track of which sequences are already finished
|
125 |
+
unfinished_sequences = torch.ones(input_ids.shape[0], dtype=torch.long, device=input_ids.device)
|
126 |
+
|
127 |
+
this_peer_finished = False # used by synced_gpus only
|
128 |
+
while True:
|
129 |
+
if synced_gpus:
|
130 |
+
# Under synced_gpus the `forward` call must continue until all gpus complete their sequence.
|
131 |
+
# The following logic allows an early break if all peers finished generating their sequence
|
132 |
+
this_peer_finished_flag = torch.tensor(0.0 if this_peer_finished else 1.0).to(input_ids.device)
|
133 |
+
# send 0.0 if we finished, 1.0 otherwise
|
134 |
+
dist.all_reduce(this_peer_finished_flag, op=dist.ReduceOp.SUM)
|
135 |
+
# did all peers finish? the reduced sum will be 0.0 then
|
136 |
+
if this_peer_finished_flag.item() == 0.0:
|
137 |
+
break
|
138 |
+
|
139 |
+
# prepare model inputs
|
140 |
+
model_inputs = self.prepare_inputs_for_generation(input_ids, **model_kwargs)
|
141 |
+
|
142 |
+
# forward pass to get next token
|
143 |
+
outputs = self(
|
144 |
+
**model_inputs,
|
145 |
+
return_dict=True,
|
146 |
+
output_attentions=output_attentions,
|
147 |
+
output_hidden_states=output_hidden_states,
|
148 |
+
)
|
149 |
+
|
150 |
+
if synced_gpus and this_peer_finished:
|
151 |
+
continue # don't waste resources running the code we don't need
|
152 |
+
|
153 |
+
next_token_logits = outputs.logits[:, -1, :]
|
154 |
+
|
155 |
+
# pre-process distribution
|
156 |
+
next_tokens_scores = logits_processor(input_ids, next_token_logits)
|
157 |
+
|
158 |
+
# Store scores, attentions and hidden_states when required
|
159 |
+
if return_dict_in_generate:
|
160 |
+
if output_scores:
|
161 |
+
scores += (next_tokens_scores,)
|
162 |
+
if output_attentions:
|
163 |
+
decoder_attentions += (
|
164 |
+
(outputs.decoder_attentions,) if not self.config.is_encoder_decoder else (outputs.attentions,)
|
165 |
+
)
|
166 |
+
if self.config.is_encoder_decoder:
|
167 |
+
cross_attentions += (outputs.cross_attentions,)
|
168 |
+
|
169 |
+
if output_hidden_states:
|
170 |
+
decoder_hidden_states += (
|
171 |
+
(outputs.decoder_hidden_states,)
|
172 |
+
if self.config.is_encoder_decoder
|
173 |
+
else (outputs.hidden_states,)
|
174 |
+
)
|
175 |
+
|
176 |
+
# argmax
|
177 |
+
next_tokens = torch.argmax(next_tokens_scores, dim=-1)
|
178 |
+
|
179 |
+
# finished sentences should have their next token be a padding token
|
180 |
+
if eos_token_id is not None:
|
181 |
+
if pad_token_id is None:
|
182 |
+
raise ValueError("If `eos_token_id` is defined, make sure that `pad_token_id` is defined.")
|
183 |
+
next_tokens = next_tokens * unfinished_sequences + pad_token_id * (1 - unfinished_sequences)
|
184 |
+
|
185 |
+
# update generated ids, model inputs, and length for next step
|
186 |
+
input_ids = torch.cat([input_ids, next_tokens[:, None]], dim=-1)
|
187 |
+
if streamer is not None:
|
188 |
+
streamer.put(next_tokens.cpu())
|
189 |
+
model_kwargs = self._update_model_kwargs_for_generation(
|
190 |
+
outputs, model_kwargs, is_encoder_decoder=self.config.is_encoder_decoder
|
191 |
+
)
|
192 |
+
|
193 |
+
# if eos_token was found in one sentence, set sentence to finished
|
194 |
+
if eos_token_id_tensor is not None:
|
195 |
+
unfinished_sequences = unfinished_sequences.mul(
|
196 |
+
next_tokens.tile(eos_token_id_tensor.shape[0], 1).ne(eos_token_id_tensor.unsqueeze(1)).prod(dim=0)
|
197 |
+
)
|
198 |
+
|
199 |
+
# stop when each sentence is finished
|
200 |
+
if unfinished_sequences.max() == 0:
|
201 |
+
this_peer_finished = True
|
202 |
+
|
203 |
+
# stop if we exceed the maximum length
|
204 |
+
try:
|
205 |
+
if stopping_criteria(input_ids, scores):
|
206 |
+
this_peer_finished = True
|
207 |
+
except:
|
208 |
+
if all(stopping_criteria(input_ids, scores)):
|
209 |
+
this_peer_finished = True
|
210 |
+
|
211 |
+
if this_peer_finished and not synced_gpus:
|
212 |
+
break
|
213 |
+
|
214 |
+
if streamer is not None:
|
215 |
+
streamer.end()
|
216 |
+
|
217 |
+
if return_dict_in_generate:
|
218 |
+
if self.config.is_encoder_decoder:
|
219 |
+
return GreedySearchEncoderDecoderOutput(
|
220 |
+
sequences=input_ids,
|
221 |
+
scores=scores,
|
222 |
+
encoder_attentions=encoder_attentions,
|
223 |
+
encoder_hidden_states=encoder_hidden_states,
|
224 |
+
decoder_attentions=decoder_attentions,
|
225 |
+
cross_attentions=cross_attentions,
|
226 |
+
decoder_hidden_states=decoder_hidden_states,
|
227 |
+
)
|
228 |
+
else:
|
229 |
+
return GreedySearchDecoderOnlyOutput(
|
230 |
+
sequences=input_ids,
|
231 |
+
scores=scores,
|
232 |
+
attentions=decoder_attentions,
|
233 |
+
hidden_states=decoder_hidden_states,
|
234 |
+
)
|
235 |
+
else:
|
236 |
+
return input_ids
|
237 |
+
|
238 |
+
def _greedy_search(
|
239 |
+
self,
|
240 |
+
input_ids: torch.LongTensor,
|
241 |
+
logits_processor: Optional[LogitsProcessorList] = None,
|
242 |
+
stopping_criteria: Optional[StoppingCriteriaList] = None,
|
243 |
+
max_length: Optional[int] = None,
|
244 |
+
pad_token_id: Optional[int] = None,
|
245 |
+
eos_token_id: Optional[Union[int, List[int]]] = None,
|
246 |
+
output_attentions: Optional[bool] = None,
|
247 |
+
output_hidden_states: Optional[bool] = None,
|
248 |
+
output_scores: Optional[bool] = None,
|
249 |
+
return_dict_in_generate: Optional[bool] = None,
|
250 |
+
synced_gpus: bool = False,
|
251 |
+
streamer: Optional["BaseStreamer"] = None,
|
252 |
+
**model_kwargs,
|
253 |
+
) -> Union[GreedySearchOutput, torch.LongTensor]:
|
254 |
+
|
255 |
+
return self.greedy_search(
|
256 |
+
input_ids,
|
257 |
+
logits_processor,
|
258 |
+
stopping_criteria,
|
259 |
+
max_length,
|
260 |
+
pad_token_id,
|
261 |
+
eos_token_id,
|
262 |
+
output_attentions,
|
263 |
+
output_hidden_states,
|
264 |
+
output_scores,
|
265 |
+
return_dict_in_generate,
|
266 |
+
synced_gpus,
|
267 |
+
streamer,
|
268 |
+
**model_kwargs,
|
269 |
+
)
|
270 |
+
def _beam_search(
|
271 |
+
self,
|
272 |
+
input_ids: torch.LongTensor,
|
273 |
+
beam_scorer: BeamScorer,
|
274 |
+
logits_processor: Optional[LogitsProcessorList] = None,
|
275 |
+
stopping_criteria: Optional[StoppingCriteriaList] = None,
|
276 |
+
max_length: Optional[int] = None,
|
277 |
+
pad_token_id: Optional[int] = None,
|
278 |
+
eos_token_id: Optional[Union[int, List[int]]] = None,
|
279 |
+
output_attentions: Optional[bool] = None,
|
280 |
+
output_hidden_states: Optional[bool] = None,
|
281 |
+
output_scores: Optional[bool] = None,
|
282 |
+
return_dict_in_generate: Optional[bool] = None,
|
283 |
+
synced_gpus: bool = False,
|
284 |
+
**model_kwargs,
|
285 |
+
) -> Union[BeamSearchOutput, torch.LongTensor]:
|
286 |
+
|
287 |
+
return self.beam_search(
|
288 |
+
input_ids,
|
289 |
+
beam_scorer,
|
290 |
+
logits_processor,
|
291 |
+
stopping_criteria,
|
292 |
+
max_length,
|
293 |
+
pad_token_id,
|
294 |
+
eos_token_id,
|
295 |
+
output_attentions,
|
296 |
+
output_hidden_states,
|
297 |
+
output_scores,
|
298 |
+
return_dict_in_generate,
|
299 |
+
synced_gpus,
|
300 |
+
**model_kwargs,
|
301 |
+
)
|
302 |
+
|
303 |
+
def beam_search(
|
304 |
+
self,
|
305 |
+
input_ids: torch.LongTensor,
|
306 |
+
beam_scorer: BeamScorer,
|
307 |
+
logits_processor: Optional[LogitsProcessorList] = None,
|
308 |
+
stopping_criteria: Optional[StoppingCriteriaList] = None,
|
309 |
+
max_length: Optional[int] = None,
|
310 |
+
pad_token_id: Optional[int] = None,
|
311 |
+
eos_token_id: Optional[Union[int, List[int]]] = None,
|
312 |
+
output_attentions: Optional[bool] = None,
|
313 |
+
output_hidden_states: Optional[bool] = None,
|
314 |
+
output_scores: Optional[bool] = None,
|
315 |
+
return_dict_in_generate: Optional[bool] = None,
|
316 |
+
synced_gpus: bool = False,
|
317 |
+
**model_kwargs,
|
318 |
+
) -> Union[BeamSearchOutput, torch.LongTensor]:
|
319 |
+
'''
|
320 |
+
This function is an edited version of the beam_search function from HuggingFace's transformers
|
321 |
+
https://github.com/huggingface/transformers/blob/main/src/transformers/generation/utils.py
|
322 |
+
'''
|
323 |
+
# init values
|
324 |
+
logits_processor = logits_processor if logits_processor is not None else LogitsProcessorList()
|
325 |
+
stopping_criteria = stopping_criteria if stopping_criteria is not None else StoppingCriteriaList()
|
326 |
+
if max_length is not None:
|
327 |
+
warnings.warn(
|
328 |
+
"`max_length` is deprecated in this function, use"
|
329 |
+
" `stopping_criteria=StoppingCriteriaList(MaxLengthCriteria(max_length=max_length))` instead.",
|
330 |
+
UserWarning,
|
331 |
+
)
|
332 |
+
stopping_criteria = validate_stopping_criteria(stopping_criteria, max_length)
|
333 |
+
if len(stopping_criteria) == 0:
|
334 |
+
warnings.warn("You don't have defined any stopping_criteria, this will likely loop forever", UserWarning)
|
335 |
+
pad_token_id = pad_token_id if pad_token_id is not None else self.generation_config.pad_token_id
|
336 |
+
eos_token_id = eos_token_id if eos_token_id is not None else self.generation_config.eos_token_id
|
337 |
+
if isinstance(eos_token_id, int):
|
338 |
+
eos_token_id = [eos_token_id]
|
339 |
+
output_scores = output_scores if output_scores is not None else self.generation_config.output_scores
|
340 |
+
output_attentions = (
|
341 |
+
output_attentions if output_attentions is not None else self.generation_config.output_attentions
|
342 |
+
)
|
343 |
+
output_hidden_states = (
|
344 |
+
output_hidden_states if output_hidden_states is not None else self.generation_config.output_hidden_states
|
345 |
+
)
|
346 |
+
return_dict_in_generate = (
|
347 |
+
return_dict_in_generate
|
348 |
+
if return_dict_in_generate is not None
|
349 |
+
else self.generation_config.return_dict_in_generate
|
350 |
+
)
|
351 |
+
|
352 |
+
batch_size = len(beam_scorer._beam_hyps)
|
353 |
+
num_beams = beam_scorer.num_beams
|
354 |
+
|
355 |
+
batch_beam_size, cur_len = input_ids.shape
|
356 |
+
|
357 |
+
if num_beams * batch_size != batch_beam_size:
|
358 |
+
raise ValueError(
|
359 |
+
f"Batch dimension of `input_ids` should be {num_beams * batch_size}, but is {batch_beam_size}."
|
360 |
+
)
|
361 |
+
|
362 |
+
# init attention / hidden states / scores tuples
|
363 |
+
scores = () if (return_dict_in_generate and output_scores) else None
|
364 |
+
beam_indices = (
|
365 |
+
tuple(() for _ in range(batch_beam_size)) if (return_dict_in_generate and output_scores) else None
|
366 |
+
)
|
367 |
+
decoder_attentions = () if (return_dict_in_generate and output_attentions) else None
|
368 |
+
cross_attentions = () if (return_dict_in_generate and output_attentions) else None
|
369 |
+
decoder_hidden_states = () if (return_dict_in_generate and output_hidden_states) else None
|
370 |
+
|
371 |
+
# if model is an encoder-decoder, retrieve encoder attention weights and hidden states
|
372 |
+
if return_dict_in_generate and self.config.is_encoder_decoder:
|
373 |
+
encoder_attentions = model_kwargs["encoder_outputs"].get("attentions") if output_attentions else None
|
374 |
+
encoder_hidden_states = (
|
375 |
+
model_kwargs["encoder_outputs"].get("hidden_states") if output_hidden_states else None
|
376 |
+
)
|
377 |
+
|
378 |
+
# initialise score of first beam with 0 and the rest with -1e9. This makes sure that only tokens
|
379 |
+
# of the first beam are considered to avoid sampling the exact same tokens across all beams.
|
380 |
+
beam_scores = torch.zeros((batch_size, num_beams), dtype=torch.float, device=input_ids.device)
|
381 |
+
beam_scores[:, 1:] = -1e9
|
382 |
+
beam_scores = beam_scores.view((batch_size * num_beams,))
|
383 |
+
|
384 |
+
this_peer_finished = False # used by synced_gpus only
|
385 |
+
while True:
|
386 |
+
if synced_gpus:
|
387 |
+
# Under synced_gpus the `forward` call must continue until all gpus complete their sequence.
|
388 |
+
# The following logic allows an early break if all peers finished generating their sequence
|
389 |
+
this_peer_finished_flag = torch.tensor(0.0 if this_peer_finished else 1.0).to(input_ids.device)
|
390 |
+
# send 0.0 if we finished, 1.0 otherwise
|
391 |
+
dist.all_reduce(this_peer_finished_flag, op=dist.ReduceOp.SUM)
|
392 |
+
# did all peers finish? the reduced sum will be 0.0 then
|
393 |
+
if this_peer_finished_flag.item() == 0.0:
|
394 |
+
break
|
395 |
+
|
396 |
+
model_inputs = self.prepare_inputs_for_generation(input_ids, **model_kwargs)
|
397 |
+
|
398 |
+
outputs = self(
|
399 |
+
**model_inputs,
|
400 |
+
return_dict=True,
|
401 |
+
output_attentions=output_attentions,
|
402 |
+
output_hidden_states=output_hidden_states,
|
403 |
+
)
|
404 |
+
|
405 |
+
if synced_gpus and this_peer_finished:
|
406 |
+
cur_len = cur_len + 1
|
407 |
+
continue # don't waste resources running the code we don't need
|
408 |
+
|
409 |
+
next_token_logits = outputs.logits[:, -1, :]
|
410 |
+
# hack: adjust tokens for Marian. For Marian we have to make sure that the `pad_token_id`
|
411 |
+
# cannot be generated both before and after the `nn.functional.log_softmax` operation.
|
412 |
+
# next_token_logits = self.adjust_logits_during_generation(next_token_logits, cur_len=cur_len)
|
413 |
+
next_token_scores = nn.functional.log_softmax(
|
414 |
+
next_token_logits, dim=-1
|
415 |
+
) # (batch_size * num_beams, vocab_size)
|
416 |
+
|
417 |
+
next_token_scores_processed = logits_processor(input_ids, next_token_scores)
|
418 |
+
# next_token_scores = next_token_scores_processed + beam_scores[:, None].expand_as(next_token_scores)
|
419 |
+
next_token_scores = next_token_scores_processed + beam_scores[:, None].expand_as(
|
420 |
+
next_token_scores_processed
|
421 |
+
)
|
422 |
+
|
423 |
+
# Store scores, attentions and hidden_states when required
|
424 |
+
if return_dict_in_generate:
|
425 |
+
if output_scores:
|
426 |
+
scores += (next_token_scores_processed,)
|
427 |
+
if output_attentions:
|
428 |
+
decoder_attentions += (
|
429 |
+
(outputs.decoder_attentions,) if not self.config.is_encoder_decoder else (outputs.attentions,)
|
430 |
+
)
|
431 |
+
if self.config.is_encoder_decoder:
|
432 |
+
cross_attentions += (outputs.cross_attentions,)
|
433 |
+
|
434 |
+
if output_hidden_states:
|
435 |
+
decoder_hidden_states += (
|
436 |
+
(outputs.decoder_hidden_states,)
|
437 |
+
if self.config.is_encoder_decoder
|
438 |
+
else (outputs.hidden_states,)
|
439 |
+
)
|
440 |
+
|
441 |
+
# reshape for beam search
|
442 |
+
vocab_size = next_token_scores.shape[-1]
|
443 |
+
next_token_scores = next_token_scores.view(batch_size, num_beams * vocab_size)
|
444 |
+
|
445 |
+
|
446 |
+
|
447 |
+
# Sample 2 next tokens for each beam (so we have some spare tokens and match output of beam search)
|
448 |
+
next_token_scores, next_tokens = torch.topk(
|
449 |
+
next_token_scores, 2 * num_beams, dim=1, largest=True, sorted=True
|
450 |
+
)
|
451 |
+
|
452 |
+
next_indices = torch.div(next_tokens, vocab_size, rounding_mode="floor")
|
453 |
+
next_tokens = next_tokens % vocab_size
|
454 |
+
|
455 |
+
# stateless
|
456 |
+
beam_outputs = beam_scorer.process(
|
457 |
+
input_ids,
|
458 |
+
next_token_scores,
|
459 |
+
next_tokens,
|
460 |
+
next_indices,
|
461 |
+
pad_token_id=pad_token_id,
|
462 |
+
eos_token_id=eos_token_id,
|
463 |
+
beam_indices=beam_indices,
|
464 |
+
)
|
465 |
+
|
466 |
+
beam_scores = beam_outputs["next_beam_scores"]
|
467 |
+
beam_next_tokens = beam_outputs["next_beam_tokens"]
|
468 |
+
beam_idx = beam_outputs["next_beam_indices"]
|
469 |
+
|
470 |
+
input_ids = torch.cat([input_ids[beam_idx, :], beam_next_tokens.unsqueeze(-1)], dim=-1)
|
471 |
+
|
472 |
+
model_kwargs = self._update_model_kwargs_for_generation(
|
473 |
+
outputs, model_kwargs, is_encoder_decoder=self.config.is_encoder_decoder
|
474 |
+
)
|
475 |
+
if model_kwargs["past_key_values"] is not None:
|
476 |
+
model_kwargs["past_key_values"] = self._reorder_cache(model_kwargs["past_key_values"], beam_idx)
|
477 |
+
|
478 |
+
if return_dict_in_generate and output_scores:
|
479 |
+
beam_indices = tuple((beam_indices[beam_idx[i]] + (beam_idx[i],) for i in range(len(beam_indices))))
|
480 |
+
|
481 |
+
# increase cur_len
|
482 |
+
cur_len = cur_len + 1
|
483 |
+
|
484 |
+
try:
|
485 |
+
if beam_scorer.is_done or stopping_criteria(input_ids, scores):
|
486 |
+
if not synced_gpus:
|
487 |
+
break
|
488 |
+
else:
|
489 |
+
this_peer_finished = True
|
490 |
+
except:
|
491 |
+
if beam_scorer.is_done or all(stopping_criteria(input_ids, scores)):
|
492 |
+
if not synced_gpus:
|
493 |
+
break
|
494 |
+
else:
|
495 |
+
this_peer_finished = True
|
496 |
+
|
497 |
+
|
498 |
+
sequence_outputs = beam_scorer.finalize(
|
499 |
+
input_ids,
|
500 |
+
beam_scores,
|
501 |
+
next_tokens,
|
502 |
+
next_indices,
|
503 |
+
pad_token_id=pad_token_id,
|
504 |
+
eos_token_id=eos_token_id,
|
505 |
+
max_length=stopping_criteria.max_length,
|
506 |
+
beam_indices=beam_indices,
|
507 |
+
)
|
508 |
+
|
509 |
+
if return_dict_in_generate:
|
510 |
+
if not output_scores:
|
511 |
+
sequence_outputs["sequence_scores"] = None
|
512 |
+
|
513 |
+
if self.config.is_encoder_decoder:
|
514 |
+
return BeamSearchEncoderDecoderOutput(
|
515 |
+
sequences=sequence_outputs["sequences"],
|
516 |
+
sequences_scores=sequence_outputs["sequence_scores"],
|
517 |
+
scores=scores,
|
518 |
+
beam_indices=sequence_outputs["beam_indices"],
|
519 |
+
encoder_attentions=encoder_attentions,
|
520 |
+
encoder_hidden_states=encoder_hidden_states,
|
521 |
+
decoder_attentions=decoder_attentions,
|
522 |
+
cross_attentions=cross_attentions,
|
523 |
+
decoder_hidden_states=decoder_hidden_states,
|
524 |
+
)
|
525 |
+
else:
|
526 |
+
return BeamSearchDecoderOnlyOutput(
|
527 |
+
sequences=sequence_outputs["sequences"],
|
528 |
+
sequences_scores=sequence_outputs["sequence_scores"],
|
529 |
+
scores=scores,
|
530 |
+
beam_indices=sequence_outputs["beam_indices"],
|
531 |
+
attentions=decoder_attentions,
|
532 |
+
hidden_states=decoder_hidden_states,
|
533 |
+
)
|
534 |
+
else:
|
535 |
+
return sequence_outputs["sequences"]
|
536 |
+
|
537 |
+
|
538 |
+
class CABlock(nn.Module):
|
539 |
+
'''
|
540 |
+
This function is an edited version of the gpt2 decoder block function from HuggingFace's transformers
|
541 |
+
https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt2/modeling_gpt2.py
|
542 |
+
'''
|
543 |
+
def __init__(self, config, layer_idx=None):
|
544 |
+
super().__init__()
|
545 |
+
hidden_size = config.hidden_size
|
546 |
+
inner_dim = config.n_inner if config.n_inner is not None else 4 * hidden_size
|
547 |
+
|
548 |
+
self.ln_2 = nn.LayerNorm(hidden_size, eps=config.layer_norm_epsilon)
|
549 |
+
|
550 |
+
self.crossattention = GPT2Attention(config, is_cross_attention=True, layer_idx=layer_idx)
|
551 |
+
self.ln_cross_attn = nn.LayerNorm(hidden_size, eps=config.layer_norm_epsilon)
|
552 |
+
|
553 |
+
self.mlp = GPT2MLP(inner_dim, config)
|
554 |
+
|
555 |
+
def forward(
|
556 |
+
self,
|
557 |
+
hidden_states: Optional[Tuple[torch.FloatTensor]],
|
558 |
+
layer_past: Optional[Tuple[torch.Tensor]] = None,
|
559 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
560 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
561 |
+
encoder_hidden_states: Optional[torch.Tensor] = None,
|
562 |
+
encoder_attention_mask: Optional[torch.FloatTensor] = None,
|
563 |
+
use_cache: Optional[bool] = False,
|
564 |
+
output_attentions: Optional[bool] = False,
|
565 |
+
) -> Union[Tuple[torch.Tensor], Optional[Tuple[torch.Tensor, Tuple[torch.FloatTensor, ...]]]]:
|
566 |
+
|
567 |
+
|
568 |
+
residual = hidden_states
|
569 |
+
hidden_states = self.ln_cross_attn(hidden_states)
|
570 |
+
cross_attn_outputs = self.crossattention(
|
571 |
+
hidden_states,
|
572 |
+
attention_mask=attention_mask,
|
573 |
+
head_mask=head_mask,
|
574 |
+
encoder_hidden_states=encoder_hidden_states,
|
575 |
+
encoder_attention_mask=encoder_attention_mask,
|
576 |
+
output_attentions=output_attentions,
|
577 |
+
)
|
578 |
+
attn_output = cross_attn_outputs[0]
|
579 |
+
# residual connection
|
580 |
+
hidden_states = residual + attn_output
|
581 |
+
|
582 |
+
residual = hidden_states
|
583 |
+
hidden_states = self.ln_2(hidden_states)
|
584 |
+
feed_forward_hidden_states = self.mlp(hidden_states)
|
585 |
+
# residual connection
|
586 |
+
hidden_states = residual + feed_forward_hidden_states
|
587 |
+
|
588 |
+
return (hidden_states,)
|
589 |
+
|