File size: 7,385 Bytes
2281fde |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 |
import multiprocessing
import os
from tqdm import tqdm
from sklearn.preprocessing import MultiLabelBinarizer
try:
from torch_geometric.data import Data
except ImportError:
raise Exception('You need to install torch geometric and its dependecies to use this model please refer to https://pytorch-geometric.readthedocs.io/en/latest/install/installation.html')
import torch
import numpy as np
from .conversion import convert_nx_to_pyg_data
try:
from graphein.protein.config import ProteinGraphConfig, DSSPConfig
from graphein.protein.features.nodes.amino_acid import amino_acid_one_hot, meiler_embedding, expasy_protein_scale, hydrogen_bond_acceptor, hydrogen_bond_donor
from graphein.protein.features.nodes.dssp import phi, psi, asa, rsa, secondary_structure
from graphein.protein.edges.distance import (add_peptide_bonds,
add_hydrogen_bond_interactions,
add_disulfide_interactions,
add_ionic_interactions,
add_delaunay_triangulation,
add_distance_threshold,
add_sequence_distance_edges,
add_k_nn_edges)
except ImportError:
raise Exception('You need to install graphein from source in addition to DSSP to use this model please refer to https://github.com/a-r-j/graphein and https://ssbio.readthedocs.io/en/latest/instructions/dssp.html')
from functools import partial
from .graphs import *
from .utils_dataset import *
import os
import sys
import subprocess
import wget
class PDB2Graph():
def __init__(self, root, output_folder, config, n_processors=int(multiprocessing.cpu_count())):
self.root = root
self.output_folder = output_folder
self.map_secondary_structure = {'-':0, 'H':1, 'B':2, 'E':3, 'G':4, 'I':5, 'T':6, 'S':7}
self.init_ohe_edge_type()
self.config = config
self.features = ['phi', 'psi', 'rsa', 'asa', 'ss', 'expasy']
self.n_processors = n_processors
self.raw_dir = root
self.processed_dir = self._processed_dir()
self.raw_file_names = self._raw_file_names()
self.processed_file_names = self._processed_file_names()
def _processed_dir(self):
#processed_dir = os.path.join(os.path.split(self.root)[0], "processed_new")
if not os.path.exists(self.output_folder):
os.makedirs(self.output_folder)
return self.output_folder
def _raw_file_names(self):
return os.listdir(self.raw_dir)
def _processed_file_names(self):
return [self.pdb2pathdata(pdb_path.split(".")[0]) for pdb_path in self.raw_file_names]
def create_nx_graph(self, path_to_structure):
return construct_graph(self.config, pdb_path = path_to_structure)
def create_pyg_graph(self, path_to_structure):
pyg_graph = convert_nx_to_pyg_data(self.create_nx_graph(path_to_structure))
graph = Data(edge_index = pyg_graph.edge_index,
num_nodes = len(pyg_graph.node_id),
node_id = pyg_graph.node_id,
name = pyg_graph.name[0],
sequence = getattr(pyg_graph, f"sequence_{pyg_graph.chain_id[0]}"),
distance_matrix = pyg_graph.dist_mat,
distance = pyg_graph.distance,
coordinates = torch.FloatTensor(np.array(pyg_graph.coords[0])))
#create the features
x = np.array([np.argmax(pyg_graph.amino_acid_one_hot, axis=1)]).reshape(-1,1)
for feat in self.features:
if feat == "ss":
feature = np.array([[self.map_secondary_structure.get(feat_node, 0)] \
for feat_node in pyg_graph[feat]])
else:
feature = np.array(pyg_graph[feat])
if len(feature.shape) == 1:
feature = feature.reshape(-1,1)
x = np.concatenate((x, feature), axis = 1)
graph.edge_type = self.mlb.transform(pyg_graph.kind)
graph.x = torch.FloatTensor(x)
# y = self.annotations[graph.name.split("_")[0]]
# if self.task == 'GeneOntology' :
# graph.y_mf = torch.FloatTensor(y["mf"])
# graph.y_cc = torch.FloatTensor(y["cc"])
# graph.y_bp = torch.FloatTensor(y["bp"])
# else:
# graph.y_ec = torch.FloatTensor(y["ec"])
return graph
def init_ohe_edge_type(self):
self.mlb = MultiLabelBinarizer(classes = ['peptide_bond', 'sequence_distance_2', 'sequence_distance_3'
, 'distance_threshold', 'delaunay', 'hbond', 'k_nn'])
self.mlb.fit([['peptide_bond', 'sequence_distance_2', 'sequence_distance_3'
, 'distance_threshold', 'delaunay', 'hbond', 'k_nn']])
def process(self):
"""Convert the PDB files into torch geometric graphs"""
# self.pdb2graph = PDB2Graph(self.config)
to_be_processed = self.get_files_to_process()
# pool = multiprocessing.Pool(self.n_processors)
# for _ in tqdm(pool.imap_unordered(self.graph_creation, to_be_processed), total=len(to_be_processed)):
# continue
# pool.close()
# pool.join()
processes = []
for prot in tqdm(to_be_processed):
p = multiprocessing.Process(target=self.graph_creation, args=(prot,))
processes.append(p)
p.start()
for process in processes:
process.join()
def graph_creation(self, pdb):
"""Create a graph from the PDB file"""
# Define the path_to_structure from the pdb name file
path_to_structure = self.pdb2pathstructure(pdb)
# Convert the structure into a graph
g = self.create_pyg_graph(path_to_structure)
# Save the graph
torch.save(g, os.path.join(self.output_folder, self.pdb2pathdata(pdb)))
return None
def pdb2pathdata(self, pdb):
return pdb+'.pt'
def pdb2pathstructure(self, pdb):
return os.path.join(self.raw_dir, pdb+'.pdb')
def get_files_to_process(self):
RAW_FILES = self.processed_file_names
PROCESSED_FILES = os.listdir(self.processed_dir)
to_be_processed = set(RAW_FILES).difference(set(PROCESSED_FILES))
to_be_processed = [path.split('.')[0] for path in to_be_processed]
return to_be_processed
def download_alphafold_structure(
uniprot_id: str,
out_dir: str,
version: int = 4
):
BASE_URL = "https://alphafold.ebi.ac.uk/files/"
uniprot_id = uniprot_id.upper()
query_url = f"{BASE_URL}AF-{uniprot_id}-F1-model_v{version}.pdb"
structure_filename = os.path.join(out_dir, f"AF-{uniprot_id}-F1-model_v{version}.pdb")
if os.path.exists(structure_filename):
return structure_filename
try:
structure_filename = wget.download(query_url, out=out_dir)
except:
print('Error.. could not download: ', f"AF-{uniprot_id}-F1-model_v{version}.pdb")
return None
return structure_filename
|