|
from transformers import GPT2Config, AutoTokenizer, GPT2Config |
|
from transformers import PretrainedConfig, PreTrainedModel |
|
import transformers |
|
from typing import Optional, Tuple, Callable |
|
import torch |
|
import torch.nn as nn |
|
from transformers.modeling_utils import PreTrainedModel, PretrainedConfig |
|
from .utils import CABlock, _GPT2LMHeadModel |
|
from .configuration_prot2text import Prot2TextConfig |
|
import os |
|
import numpy as np |
|
from transformers.generation.configuration_utils import GenerationConfig |
|
from transformers.generation.logits_process import LogitsProcessorList |
|
from transformers.generation.stopping_criteria import StoppingCriteriaList |
|
|
|
from .pdb2graph import PDB2Graph, download_alphafold_structure |
|
from .graphs import * |
|
from .utils_dataset import * |
|
|
|
try: |
|
from graphein.protein.config import ProteinGraphConfig, DSSPConfig |
|
from graphein.protein.features.nodes.amino_acid import amino_acid_one_hot, meiler_embedding, expasy_protein_scale, hydrogen_bond_acceptor, hydrogen_bond_donor |
|
from graphein.protein.features.nodes.dssp import phi, psi, asa, rsa, secondary_structure |
|
from graphein.protein.edges.distance import (add_peptide_bonds, |
|
add_hydrogen_bond_interactions, |
|
add_distance_threshold, |
|
) |
|
except ImportError: |
|
raise Exception('You need to install graphein from source in addition to DSSP to use this model please refer to https://github.com/a-r-j/graphein and https://ssbio.readthedocs.io/en/latest/instructions/dssp.html') |
|
|
|
try: |
|
from torch_geometric.nn import RGCNConv, global_mean_pool |
|
except ImportError: |
|
raise Exception('You need to install torch geometric and its dependecies to use this model please refer to https://pytorch-geometric.readthedocs.io/en/latest/install/installation.html') |
|
|
|
|
|
|
|
class EncoderRGCN(PreTrainedModel): |
|
''' |
|
This class implement the RGCN encoder to encode the protein structure |
|
''' |
|
def __init__(self, input_dim, hidden_dim=512, n_layers=6, emb_dim=512, dropout=0.2, num_relation=7, prot2text_version='1.0'): |
|
super(EncoderRGCN, self).__init__(PretrainedConfig(name='RGCN')) |
|
self.n_layers = n_layers |
|
self.output_dim = emb_dim |
|
self.prot2text_version = prot2text_version |
|
|
|
self.fc0 = nn.Linear(input_dim, hidden_dim) |
|
self.batchnorm_final = nn.BatchNorm1d(hidden_dim) |
|
|
|
self.batch_norms = nn.ModuleList() |
|
self.batch_norms.append(nn.BatchNorm1d(hidden_dim)) |
|
lst = list() |
|
|
|
lst.append(RGCNConv(hidden_dim, hidden_dim, num_relations=num_relation)) |
|
|
|
for i in range(n_layers-1): |
|
lst.append(RGCNConv(hidden_dim,hidden_dim, num_relations=num_relation)) |
|
|
|
self.conv = nn.ModuleList(lst) |
|
|
|
self.fc1 = nn.Linear(hidden_dim, hidden_dim) |
|
self.fc2 = nn.Linear(hidden_dim, self.output_dim) |
|
|
|
self.dropout = nn.Dropout(p=dropout) |
|
self.relu = nn.LeakyReLU() |
|
self.batchnorm = nn.BatchNorm1d(hidden_dim) |
|
self.main_input_name = 'nothing' |
|
|
|
def forward(self, x:Optional[torch.FloatTensor] = None, |
|
edge_index:Optional[torch.LongTensor] = None, |
|
edge_type:Optional[torch.LongTensor] = None, |
|
batch:Optional[torch.LongTensor] = None, |
|
**kargs): |
|
|
|
x = self.relu(self.fc0(x)) |
|
|
|
for i in range(self.n_layers): |
|
x = self.conv[i](x, edge_index, edge_type) |
|
|
|
out = global_mean_pool(x, batch) |
|
out = self.relu(self.fc1(out)) |
|
out = self.relu(self.fc2(out)) |
|
|
|
return out.unsqueeze(1) |
|
|
|
class Prot2TextModel(PreTrainedModel): |
|
config_class = Prot2TextConfig |
|
_keys_to_ignore_on_load_missing = [r"transformer"] |
|
base_model_prefix = "decoder" |
|
def __init__(self, config): |
|
super().__init__(config) |
|
|
|
self.gpt_config = GPT2Config.from_dict(config.gpt_config) |
|
|
|
|
|
if config.rgcn: |
|
self.encoder = EncoderRGCN(input_dim=config.rgcn_input_dim, hidden_dim=self.gpt_config.n_embd, n_layers=config.rgcn_n_layers, emb_dim=self.gpt_config.n_embd, prot2text_version=self.config.prot2text_version) |
|
|
|
|
|
self.decoder = _GPT2LMHeadModel(self.gpt_config) |
|
|
|
|
|
if config.esm: |
|
self.esm_config = PretrainedConfig.from_dict(config.esm_config) |
|
self.esm = transformers.EsmModel(self.esm_config) |
|
self.to_embedding = nn.Linear(self.esm_config.hidden_size, self.gpt_config.n_embd) |
|
if config.cross_esm_graph and config.rgcn: |
|
self.h = nn.ModuleList([CABlock(self.gpt_config, layer_idx=i) for i in range(4)]) |
|
self.ln_f = nn.LayerNorm(self.gpt_config.n_embd, eps=self.gpt_config.layer_norm_epsilon) |
|
|
|
self.config = config |
|
|
|
|
|
def get_encoder(self): |
|
return self.encoder |
|
|
|
def get_decoder(self): |
|
return self.decoder |
|
|
|
def get_input_embeddings(self): |
|
if hasattr(self, "transformer"): |
|
return self.transformer.wte |
|
return self.decoder.transformer.wte |
|
|
|
def warm_up(self, gpt_model=None, esm_model=None): |
|
if esm_model is not None: |
|
self.esm = transformers.EsmModel.from_pretrained(esm_model) |
|
if gpt_model is not None: |
|
self.decoder = _GPT2LMHeadModel.from_pretrained(gpt_model, add_cross_attention=True, use_cache=False) |
|
self.decoder.resize_token_embeddings(self.gpt_config.vocab_size) |
|
self.decoder.config = self.gpt_config |
|
|
|
|
|
def forward(self, |
|
encoder_input_ids: Optional[torch.LongTensor] = None, |
|
edge_index: Optional[torch.LongTensor] = None, |
|
batch: Optional[torch.LongTensor] = None, |
|
x: Optional[torch.FloatTensor] = None, |
|
edge_type: Optional[torch.LongTensor] = None, |
|
decoder_input_ids: Optional[torch.LongTensor] = None, |
|
past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None, |
|
past_key_values_graph_esm: Optional[Tuple[Tuple[torch.Tensor]]] = None, |
|
decoder_attention_mask: Optional[torch.FloatTensor] = None, |
|
attention_mask: Optional[torch.FloatTensor] = None, |
|
token_type_ids: Optional[torch.LongTensor] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
head_mask: Optional[torch.FloatTensor] = None, |
|
inputs_embeds: Optional[torch.FloatTensor] = None, |
|
encoder_hidden_states: Optional[torch.Tensor] = None, |
|
encoder_attention_mask: Optional[torch.FloatTensor] = None, |
|
labels: Optional[torch.LongTensor] = None, |
|
use_cache: Optional[bool] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
get_graph_emb: Optional[bool] = False, |
|
**delete_args, |
|
): |
|
use_cache = use_cache if use_cache is not None else self.gpt_config.use_cache |
|
return_dict = return_dict if return_dict is not None else self.gpt_config.use_return_dict |
|
|
|
|
|
if decoder_input_ids is not None and len(decoder_input_ids.size()) == 3: |
|
decoder_input_ids = decoder_input_ids.squeeze(0) |
|
|
|
if x is not None and self.config.rgcn: |
|
graph_emb = self.encoder(x, edge_index, edge_type, batch) |
|
graph_mask = None |
|
|
|
if self.config.esm: |
|
if self.config.prot2text_version=='1.0': |
|
if encoder_input_ids.size()[1] != 1021: |
|
raise ValueError("For this version of the model you need to PAD/Truncate the amino acid sequence for the ESM model to 1021") |
|
|
|
esm_emb = self.esm(input_ids=encoder_input_ids, attention_mask=attention_mask, return_dict=return_dict).last_hidden_state |
|
esm_emb = self.to_embedding(esm_emb) |
|
if not self.config.cross_esm_graph and self.config.rgcn: |
|
graph_emb = torch.cat((graph_emb, esm_emb), dim=1) |
|
t_add = torch.ones((attention_mask.size(0), 1)).to(attention_mask.get_device()) |
|
attention_mask = torch.cat((t_add, attention_mask), dim=1) |
|
elif self.config.cross_esm_graph and self.config.rgcn: |
|
if past_key_values_graph_esm is None: |
|
past_length = 0 |
|
past_key_values_graph_esm = tuple([None] * len(self.h)) |
|
else: |
|
past_length = past_key_values_graph_esm[0][0].size(-2) |
|
output_shape = esm_emb.size() |
|
|
|
all_self_attentions = () if output_attentions else None |
|
all_cross_attentions = () if output_attentions and self.gpt_config.add_cross_attention else None |
|
all_hidden_states = () if output_hidden_states else None |
|
for i, (block, layer_past) in enumerate(zip(self.h, past_key_values_graph_esm)): |
|
outputs = block( |
|
esm_emb, |
|
layer_past=layer_past, |
|
attention_mask=attention_mask, |
|
encoder_hidden_states=graph_emb, |
|
encoder_attention_mask=graph_mask, |
|
use_cache=use_cache, |
|
output_attentions=False, |
|
) |
|
esm_emb = outputs[0] |
|
|
|
esm_emb = self.ln_f(esm_emb) |
|
esm_emb = esm_emb.view(output_shape) |
|
graph_emb = esm_emb |
|
else: |
|
graph_emb = esm_emb |
|
else: |
|
attention_mask = None |
|
if self.config.prot2text_version=='1.0': |
|
attention_mask = None |
|
if get_graph_emb: |
|
return graph_emb |
|
|
|
transformer_outputs = self.decoder(input_ids=decoder_input_ids, |
|
past_key_values=past_key_values, |
|
attention_mask=decoder_attention_mask, |
|
token_type_ids=token_type_ids, |
|
position_ids=position_ids, |
|
head_mask=head_mask, |
|
inputs_embeds=inputs_embeds, |
|
encoder_hidden_states=graph_emb, |
|
encoder_attention_mask=attention_mask, |
|
labels=labels, |
|
use_cache=use_cache, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
) |
|
|
|
return transformer_outputs |
|
|
|
@torch.no_grad() |
|
def generate_protein_description(self, |
|
protein_pdbID=None, |
|
protein_sequence=None, |
|
edge_index: Optional[torch.LongTensor] = None, |
|
x: Optional[torch.FloatTensor] = None, |
|
edge_type: Optional[torch.LongTensor] = None, |
|
tokenizer=None, |
|
device='cpu' |
|
): |
|
|
|
if self.config.esm and not self.config.rgcn and protein_sequence==None: |
|
raise ValueError( |
|
"The model you are trying to use is based only on protein sequence, please provide an amino-acid protein_sequence" |
|
) |
|
if self.config.rgcn and protein_pdbID==None and (x==None or edge_index==None or edge_type==None): |
|
raise ValueError( |
|
"The model you are trying to use is based on protein structure, please provide a AlphaFold ID (you must have to have internet connection using protein_pdbID, or provide the triplet inputs: x (node features), edge_index and edge_type" |
|
) |
|
if self.config.esm: |
|
esmtokenizer = AutoTokenizer.from_pretrained(self.config.esm_model_name) |
|
|
|
if protein_pdbID==None and protein_sequence==None: |
|
raise ValueError( |
|
"you need to provide either a protein AlphaFold Id or an amino-acid sequence" |
|
) |
|
|
|
if protein_pdbID!=None: |
|
config = {"node_metadata_functions": [amino_acid_one_hot, |
|
expasy_protein_scale, |
|
meiler_embedding, |
|
hydrogen_bond_acceptor, hydrogen_bond_donor |
|
], |
|
"edge_construction_functions": [add_peptide_bonds, |
|
add_hydrogen_bond_interactions, |
|
partial(add_distance_threshold, long_interaction_threshold=3, threshold=10.),], |
|
"graph_metadata_functions":[asa,phi, psi, secondary_structure, rsa], |
|
"dssp_config": DSSPConfig()} |
|
config = ProteinGraphConfig(**config) |
|
|
|
PATH_TO_DATA = f"~/.tmp/pdb/pdb" |
|
OUTPUT_FOLDER = f"~/.tmp/pdb/raw" |
|
save_dir = f"~/.tmp/pdb/" |
|
isExist = os.path.exists(PATH_TO_DATA) |
|
if not isExist: |
|
os.makedirs(PATH_TO_DATA) |
|
isExist = os.path.exists(OUTPUT_FOLDER) |
|
if not isExist: |
|
os.makedirs(OUTPUT_FOLDER) |
|
isExist = os.path.exists(save_dir+'processed') |
|
if not isExist: |
|
os.makedirs(save_dir+'processed') |
|
|
|
structure_filename = download_alphafold_structure(uniprot_id=protein_pdbID, out_dir=PATH_TO_DATA) |
|
if structure_filename is None: |
|
raise ValueError("Error! the ID does not exist in AlphaFoldDB or you do not have internet connection") |
|
graph_filename = structure_filename.split('/') |
|
graph_filename[-2] = 'raw' |
|
graph_filename[-1] = graph_filename[-1].replace('.pdb', '.pt') |
|
graph_filename = '/'.join(graph_filename) |
|
process_filename = structure_filename.split('/') |
|
process_filename[-2] = 'processed' |
|
process_filename[-1] = process_filename[-1].replace('.pdb', '.pt') |
|
process_filename = '/'.join(process_filename) |
|
try: |
|
gpdb = PDB2Graph(root = PATH_TO_DATA, output_folder = OUTPUT_FOLDER, config=config, n_processors=1).create_pyg_graph(structure_filename) |
|
seq = esmtokenizer(gpdb.sequence, add_special_tokens=True, truncation=True, max_length=1021, padding='max_length',return_tensors="pt") |
|
torch.save(gpdb, graph_filename) |
|
gpdb.edge_type = [np.array(gpdb.edge_type.transpose(0,1))] |
|
gpdb.encoder_input_ids = seq['input_ids'] |
|
gpdb.attention_mask = seq['attention_mask'] |
|
torch.save(gpdb, process_filename) |
|
except: |
|
os.remove(structure_filename) |
|
raise ValueError('creating graphs did not work, probably the pdb file of alphaFold is damaged') |
|
|
|
self.eval() |
|
inputs = gpdb |
|
inputs = inputs.to_dict() |
|
|
|
inputs['edge_type'] = torch.cat([torch.tensor(inputs['edge_type'][i]) for i in range(len(inputs['edge_type']))], dim=0) |
|
inputs['edge_type'] = torch.argmax(inputs['edge_type'], dim=1) |
|
for key in ['num_nodes', 'node_id', 'name', 'sequence', 'distance_matrix', 'distance', 'coordinates']: |
|
inputs.pop(key) |
|
inputs['decoder_input_ids'] = inputs['encoder_input_ids'][:,0:1].clone() |
|
inputs['decoder_input_ids'][:,0] = tokenizer.bos_token_id |
|
inputs["decoder_attention_mask"] = torch.ones(inputs['decoder_input_ids'].shape[0], 1) |
|
self.to(device) |
|
inputs = {k: v.to(device=device, non_blocking=True) if hasattr(v, 'to') else v for k, v in inputs.items()} |
|
encoder_state = dict() |
|
encoder_state['hidden_states'] = self(**inputs, get_graph_emb=True, output_attentions=True) |
|
encoder_state['attentions'] = inputs['attention_mask'] |
|
for key in ['edge_index', 'edge_type', 'x', 'encoder_input_ids']: |
|
inputs.pop(key) |
|
tok_ids = self.decoder.generate(input_ids=inputs['decoder_input_ids'], |
|
encoder_outputs=encoder_state, |
|
use_cache=True, |
|
output_attentions=False, |
|
output_scores=False, |
|
return_dict_in_generate=True, |
|
encoder_attention_mask=inputs['attention_mask'], |
|
length_penalty=1.0, |
|
no_repeat_ngram_size=None, |
|
early_stopping=False, |
|
num_beams=1) |
|
|
|
generated = tokenizer.batch_decode(tok_ids.get('sequences'), skip_special_tokens=True) |
|
|
|
os.remove(structure_filename) |
|
os.remove(graph_filename) |
|
os.remove(process_filename) |
|
|
|
return generated[0].replace('<|stop_token|>', '').replace('<|graph_token|>', '') |
|
|
|
else: |
|
seq = esmtokenizer([protein_sequence], add_special_tokens=True, truncation=True, max_length=1021, padding='max_length', return_tensors="pt") |
|
inputs={} |
|
inputs['encoder_input_ids'] = seq['input_ids'] |
|
inputs['attention_mask'] = seq['attention_mask'] |
|
inputs['decoder_input_ids'] = inputs['encoder_input_ids'][:,0:1].clone() |
|
inputs['decoder_input_ids'][:,0] = tokenizer.bos_token_id |
|
|
|
self.to(device) |
|
inputs = {k: v.to(device=device, non_blocking=True) if hasattr(v, 'to') else v for k, v in inputs.items()} |
|
encoder_state = dict() |
|
encoder_state['hidden_states'] = self(**inputs, get_graph_emb=True, output_attentions=True) |
|
generated = tokenizer.batch_decode(self.decoder.generate(input_ids=inputs['decoder_input_ids'], encoder_outputs=encoder_state, use_cache=True), skip_special_tokens=True) |
|
|
|
return generated[0].replace('<|stop_token|>', '').replace('<|graph_token|>', '') |
|
|
|
@torch.no_grad() |
|
def generate(self, |
|
inputs: Optional[torch.Tensor] = None, |
|
generation_config: Optional[GenerationConfig] = None, |
|
logits_processor: Optional[LogitsProcessorList] = None, |
|
stopping_criteria: Optional[StoppingCriteriaList] = None, |
|
prefix_allowed_tokens_fn: Optional[Callable[[int, torch.Tensor], List[int]]] = None, |
|
synced_gpus: Optional[bool] = None, |
|
assistant_model: Optional["PreTrainedModel"] = None, |
|
streamer: Optional["BaseStreamer"] = None, |
|
**kwargs, |
|
): |
|
encoder_state = self(**kwargs, get_graph_emb=True) |
|
input_ids = kwargs['decoder_input_ids'] |
|
attention_mask = kwargs['decoder_attention_mask'] |
|
kwargs['encoder_attention_mask'] = kwargs['attention_mask'] |
|
if not self.config.cross_esm_graph and self.config.rgcn and self.config.esm: |
|
t_add = torch.ones((kwargs['encoder_attention_mask'].size(0), 1)).to(kwargs['encoder_attention_mask'].get_device()) |
|
kwargs['encoder_attention_mask'] = torch.cat((t_add, kwargs['encoder_attention_mask']), dim=1) |
|
for key in ['edge_index', 'edge_type', 'x', 'encoder_input_ids', 'decoder_input_ids', 'decoder_attention_mask', 'batch', 'attention_mask', 'max_length', |
|
'_num_nodes', 'node_id', 'name', 'sequence', 'distance_matrix', 'distance', 'coordinates', 'ptr', 'num_nodes',]: |
|
if key in kwargs.keys(): |
|
kwargs.pop(key) |
|
return self.decoder.generate(input_ids=input_ids, |
|
generation_config=generation_config, |
|
logits_processor=logits_processor, |
|
stopping_criteria=stopping_criteria, |
|
prefix_allowed_tokens_fn=prefix_allowed_tokens_fn, |
|
synced_gpus=synced_gpus, |
|
assistant_model=assistant_model, |
|
streamer=streamer, |
|
encoder_outputs={'hidden_states': encoder_state, 'attentions':0}, |
|
**kwargs |
|
) |