File size: 23,301 Bytes
4636dc3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8b4088d
 
 
 
 
 
 
 
 
 
4636dc3
8b4088d
 
 
 
4636dc3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bc973d1
 
 
 
 
 
 
 
 
4636dc3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bc973d1
 
 
 
 
 
 
 
 
 
 
 
4636dc3
bc973d1
4636dc3
bc973d1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4636dc3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
from transformers import GPT2Config, AutoTokenizer, GPT2Config
from transformers import PretrainedConfig, PreTrainedModel
import transformers
from typing import Optional, Tuple, Callable
import torch
import torch.nn as nn
from transformers.modeling_utils import PreTrainedModel, PretrainedConfig
from .utils import CABlock, _GPT2LMHeadModel
from .configuration_prot2text import Prot2TextConfig
import os
import numpy as np
from transformers.generation.configuration_utils import GenerationConfig
from transformers.generation.logits_process import LogitsProcessorList
from transformers.generation.stopping_criteria import StoppingCriteriaList

from .pdb2graph import PDB2Graph, download_alphafold_structure
from .graphs import *
from .utils_dataset import *

try:
    from graphein.protein.config import ProteinGraphConfig, DSSPConfig
    from graphein.protein.features.nodes.amino_acid import amino_acid_one_hot, meiler_embedding, expasy_protein_scale, hydrogen_bond_acceptor, hydrogen_bond_donor
    from graphein.protein.features.nodes.dssp import  phi, psi, asa, rsa, secondary_structure
    from graphein.protein.edges.distance import (add_peptide_bonds,
                                                add_hydrogen_bond_interactions,
                                                add_distance_threshold,
                                                )
except ImportError:
    raise Exception('You need to install graphein from source in addition to DSSP to use this model please refer to https://github.com/a-r-j/graphein and https://ssbio.readthedocs.io/en/latest/instructions/dssp.html')

try:
    from torch_geometric.nn import RGCNConv, global_mean_pool
except ImportError:  
    raise Exception('You need to install torch geometric and its dependecies to use this model please refer to https://pytorch-geometric.readthedocs.io/en/latest/install/installation.html')



class EncoderRGCN(PreTrainedModel):
    '''
    This class implement the RGCN encoder to encode the protein structure
    '''
    def __init__(self, input_dim, hidden_dim=512, n_layers=6, emb_dim=512, dropout=0.2, num_relation=7, prot2text_version='1.0'):
        super(EncoderRGCN, self).__init__(PretrainedConfig(name='RGCN'))
        self.n_layers = n_layers
        self.output_dim = emb_dim
        self.prot2text_version = prot2text_version

        self.fc0 = nn.Linear(input_dim, hidden_dim)
        self.batchnorm_final = nn.BatchNorm1d(hidden_dim)
        
        self.batch_norms = nn.ModuleList()
        self.batch_norms.append(nn.BatchNorm1d(hidden_dim))
        lst = list()
        
        lst.append(RGCNConv(hidden_dim, hidden_dim, num_relations=num_relation))
            
        for i in range(n_layers-1):
            lst.append(RGCNConv(hidden_dim,hidden_dim, num_relations=num_relation))

        self.conv = nn.ModuleList(lst)
      
        self.fc1 = nn.Linear(hidden_dim, hidden_dim)
        self.fc2 = nn.Linear(hidden_dim, self.output_dim)
      
        self.dropout = nn.Dropout(p=dropout)
        self.relu = nn.LeakyReLU()
        self.batchnorm = nn.BatchNorm1d(hidden_dim)
        self.main_input_name = 'nothing'

    def forward(self, x:Optional[torch.FloatTensor] = None, 
                edge_index:Optional[torch.LongTensor] = None,
                edge_type:Optional[torch.LongTensor] = None,
                batch:Optional[torch.LongTensor] = None,
                **kargs):
        #construct pyg edge index shape (2, num_edges) from edge_list
        x = self.relu(self.fc0(x))
        
        for i in range(self.n_layers):
            x = self.conv[i](x, edge_index, edge_type)

        out = global_mean_pool(x, batch)
        out = self.relu(self.fc1(out))
        out = self.relu(self.fc2(out))
        
        return out.unsqueeze(1)

class Prot2TextModel(PreTrainedModel):
    config_class = Prot2TextConfig
    _keys_to_ignore_on_load_missing = [r"transformer"]
    base_model_prefix = "decoder"
    def __init__(self, config):
        super().__init__(config)

        self.gpt_config = GPT2Config.from_dict(config.gpt_config)
        
        # if we are using RGCN to encode the protein's structure, define the RGCN encoder
        if config.rgcn:
            self.encoder = EncoderRGCN(input_dim=config.rgcn_input_dim, hidden_dim=self.gpt_config.n_embd, n_layers=config.rgcn_n_layers, emb_dim=self.gpt_config.n_embd, prot2text_version=self.config.prot2text_version)

        # define the GPT2 decoder
        self.decoder = _GPT2LMHeadModel(self.gpt_config)

        # if using ESM to encode protein's sequence, define the ESM layer, the Projection layer and the fusion layer
        if config.esm:
            self.esm_config = PretrainedConfig.from_dict(config.esm_config)
            self.esm = transformers.EsmModel(self.esm_config)
            self.to_embedding = nn.Linear(self.esm_config.hidden_size, self.gpt_config.n_embd)
            if config.cross_esm_graph and config.rgcn:
                self.h = nn.ModuleList([CABlock(self.gpt_config,  layer_idx=i) for i in range(4)])
                self.ln_f = nn.LayerNorm(self.gpt_config.n_embd, eps=self.gpt_config.layer_norm_epsilon)
            
        self.config = config
        
        
    def get_encoder(self):
        return self.encoder
        
    def get_decoder(self):
        return self.decoder

    def get_input_embeddings(self):
        if hasattr(self, "transformer"):
            return self.transformer.wte
        return self.decoder.transformer.wte
    
    def warm_up(self, gpt_model=None, esm_model=None):
        if esm_model is not None:
            self.esm = transformers.EsmModel.from_pretrained(esm_model)
        if gpt_model is not None:    
            self.decoder = _GPT2LMHeadModel.from_pretrained(gpt_model, add_cross_attention=True, use_cache=False)
            self.decoder.resize_token_embeddings(self.gpt_config.vocab_size)
            self.decoder.config = self.gpt_config
                
        
    def forward(self,
                encoder_input_ids: Optional[torch.LongTensor] = None,
                edge_index: Optional[torch.LongTensor] = None,
                batch: Optional[torch.LongTensor] = None,
                x: Optional[torch.FloatTensor] = None,
                edge_type: Optional[torch.LongTensor] = None,
                decoder_input_ids: Optional[torch.LongTensor] = None,
                past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None,
                past_key_values_graph_esm: Optional[Tuple[Tuple[torch.Tensor]]] = None,
                decoder_attention_mask: Optional[torch.FloatTensor] = None,
                attention_mask: Optional[torch.FloatTensor] = None,
                token_type_ids: Optional[torch.LongTensor] = None,
                position_ids: Optional[torch.LongTensor] = None,
                head_mask: Optional[torch.FloatTensor] = None,
                inputs_embeds: Optional[torch.FloatTensor] = None,
                encoder_hidden_states: Optional[torch.Tensor] = None,
                encoder_attention_mask: Optional[torch.FloatTensor] = None,
                labels: Optional[torch.LongTensor] = None,
                use_cache: Optional[bool] = None,
                output_attentions: Optional[bool] = None,
                output_hidden_states: Optional[bool] = None,
                return_dict: Optional[bool] = None,
                get_graph_emb: Optional[bool] = False,
                **delete_args,
            ):
        use_cache = use_cache if use_cache is not None else self.gpt_config.use_cache
        return_dict = return_dict if return_dict is not None else self.gpt_config.use_return_dict
        
        
        if decoder_input_ids is not None and len(decoder_input_ids.size()) == 3:
            decoder_input_ids = decoder_input_ids.squeeze(0) 

        if x is not None and self.config.rgcn:
            graph_emb = self.encoder(x, edge_index, edge_type, batch)
            graph_mask = None
            
        if self.config.esm:
            if self.config.prot2text_version=='1.0':
                if encoder_input_ids.size()[1] != 1021:
                    raise ValueError("For this version of the model you need to PAD/Truncate the amino acid sequence for the ESM model to 1021")
            
            esm_emb = self.esm(input_ids=encoder_input_ids, attention_mask=attention_mask, return_dict=return_dict).last_hidden_state
            esm_emb = self.to_embedding(esm_emb)
            if not self.config.cross_esm_graph and self.config.rgcn:
                graph_emb = torch.cat((graph_emb, esm_emb), dim=1)
                t_add = torch.ones((attention_mask.size(0), 1)).to(attention_mask.get_device())
                attention_mask = torch.cat((t_add, attention_mask), dim=1) 
            elif self.config.cross_esm_graph and self.config.rgcn:
                if past_key_values_graph_esm is None:
                    past_length = 0
                    past_key_values_graph_esm = tuple([None] * len(self.h))
                else:
                    past_length = past_key_values_graph_esm[0][0].size(-2) 
                output_shape = esm_emb.size()
                
                all_self_attentions = () if output_attentions else None
                all_cross_attentions = () if output_attentions and self.gpt_config.add_cross_attention else None
                all_hidden_states = () if output_hidden_states else None
                for i, (block, layer_past) in enumerate(zip(self.h, past_key_values_graph_esm)):
                    outputs = block(
                        esm_emb,
                        layer_past=layer_past,
                        attention_mask=attention_mask,
                        encoder_hidden_states=graph_emb,
                        encoder_attention_mask=graph_mask,
                        use_cache=use_cache,
                        output_attentions=False,
                    )
                    esm_emb = outputs[0]

                esm_emb = self.ln_f(esm_emb)
                esm_emb = esm_emb.view(output_shape)  
                graph_emb = esm_emb
            else:
                graph_emb = esm_emb
        else:
            attention_mask = None
        if self.config.prot2text_version=='1.0':
            attention_mask = None
        if get_graph_emb:
            return graph_emb
    
        transformer_outputs = self.decoder(input_ids=decoder_input_ids,
                                            past_key_values=past_key_values,
                                            attention_mask=decoder_attention_mask,
                                            token_type_ids=token_type_ids,
                                            position_ids=position_ids,
                                            head_mask=head_mask,
                                            inputs_embeds=inputs_embeds,
                                            encoder_hidden_states=graph_emb,
                                            encoder_attention_mask=attention_mask,
                                            labels=labels,
                                            use_cache=use_cache,
                                            output_attentions=output_attentions,
                                            output_hidden_states=output_hidden_states,
                                            return_dict=return_dict,
                                            )
        
        return transformer_outputs
    
    @torch.no_grad()    
    def generate_protein_description(self,
                                    protein_pdbID=None, 
                                    protein_sequence=None,
                                    edge_index: Optional[torch.LongTensor] = None,
                                    x: Optional[torch.FloatTensor] = None,
                                    edge_type: Optional[torch.LongTensor] = None,
                                    tokenizer=None,
                                    device='cpu',
                                     streamer=None, 
                                     max_new_tokens=None, 
                                     do_sample=None, 
                                     top_p=None,
                                     top_k=None, 
                                     temperature=None, 
                                     num_beams=1, 
                                     repetition_penalty=None
                                     ):
        
        if self.config.esm and not self.config.rgcn and protein_sequence==None:
            raise ValueError(
                "The model you are trying to use is based only on protein sequence, please provide an amino-acid protein_sequence"
            )
        if self.config.rgcn and protein_pdbID==None and (x==None or edge_index==None or edge_type==None):
            raise ValueError(
                "The model you are trying to use is based on protein structure, please provide a AlphaFold ID (you must have to have internet connection using protein_pdbID, or provide the triplet inputs: x (node features), edge_index and edge_type"
            )
        if self.config.esm:
            esmtokenizer = AutoTokenizer.from_pretrained(self.config.esm_model_name)
        
        if protein_pdbID==None and protein_sequence==None:
            raise ValueError(
                "you need to provide either a protein AlphaFold Id or an amino-acid sequence"
            )
            
        if protein_pdbID!=None:
            config = {"node_metadata_functions": [amino_acid_one_hot, 
                                                expasy_protein_scale,
                                                meiler_embedding,
                                                hydrogen_bond_acceptor, hydrogen_bond_donor
                                                ],
                    "edge_construction_functions": [add_peptide_bonds,
                                                    add_hydrogen_bond_interactions,
                                                    partial(add_distance_threshold, long_interaction_threshold=3, threshold=10.),],
                    "graph_metadata_functions":[asa,phi, psi, secondary_structure, rsa],
                    "dssp_config": DSSPConfig()}
            config = ProteinGraphConfig(**config)

            PATH_TO_DATA = f"~/.tmp/pdb/pdb"
            OUTPUT_FOLDER = f"~/.tmp/pdb/raw"
            save_dir = f"~/.tmp/pdb/"
            isExist = os.path.exists(PATH_TO_DATA)
            if not isExist:
                os.makedirs(PATH_TO_DATA)
            isExist = os.path.exists(OUTPUT_FOLDER)
            if not isExist:
                os.makedirs(OUTPUT_FOLDER)
            isExist = os.path.exists(save_dir+'processed')
            if not isExist:
                os.makedirs(save_dir+'processed')
            
            structure_filename = download_alphafold_structure(uniprot_id=protein_pdbID, out_dir=PATH_TO_DATA)
            if structure_filename is None:
                raise ValueError("Error! the ID does not exist in AlphaFoldDB or you do not have internet connection")
            graph_filename = structure_filename.split('/')
            graph_filename[-2] = 'raw'
            graph_filename[-1] = graph_filename[-1].replace('.pdb', '.pt')
            graph_filename = '/'.join(graph_filename)
            process_filename = structure_filename.split('/')
            process_filename[-2] = 'processed'
            process_filename[-1] = process_filename[-1].replace('.pdb', '.pt')
            process_filename = '/'.join(process_filename)    
            try:            
                gpdb = PDB2Graph(root = PATH_TO_DATA, output_folder = OUTPUT_FOLDER, config=config, n_processors=1).create_pyg_graph(structure_filename)
                seq = esmtokenizer(gpdb.sequence, add_special_tokens=True, truncation=True, max_length=1021, padding='max_length',return_tensors="pt") #
                torch.save(gpdb, graph_filename)
                gpdb.edge_type = [np.array(gpdb.edge_type.transpose(0,1))]
                gpdb.encoder_input_ids = seq['input_ids']
                gpdb.attention_mask = seq['attention_mask']
                torch.save(gpdb, process_filename)
            except:
                os.remove(structure_filename)
                raise ValueError('creating graphs did not work, probably the pdb file of alphaFold is damaged')
            
            self.eval()
            inputs = gpdb
            inputs = inputs.to_dict()
            
            inputs['edge_type'] =  torch.cat([torch.tensor(inputs['edge_type'][i]) for i in range(len(inputs['edge_type']))], dim=0)
            inputs['edge_type'] = torch.argmax(inputs['edge_type'], dim=1)
            for key in ['num_nodes', 'node_id', 'name', 'sequence', 'distance_matrix', 'distance', 'coordinates']:
                inputs.pop(key)
            inputs['decoder_input_ids'] = inputs['encoder_input_ids'][:,0:1].clone()
            inputs['decoder_input_ids'][:,0] = tokenizer.bos_token_id
            inputs["decoder_attention_mask"] = torch.ones(inputs['decoder_input_ids'].shape[0], 1)
            self.to(device)
            inputs = {k: v.to(device=device, non_blocking=True) if hasattr(v, 'to') else v for k, v in inputs.items()}
            encoder_state = dict()
            encoder_state['hidden_states'] = self(**inputs, get_graph_emb=True, output_attentions=True)
            encoder_state['attentions'] = inputs['attention_mask']
            for key in ['edge_index', 'edge_type', 'x', 'encoder_input_ids']:
                inputs.pop(key)
            if streamer is None:
                tok_ids = self.decoder.generate(input_ids=inputs['decoder_input_ids'], 
                                                encoder_outputs=encoder_state, 
                                                use_cache=True, 
                                                output_attentions=False, 
                                                output_scores=False, 
                                                return_dict_in_generate=True, 
                                                encoder_attention_mask=inputs['attention_mask'], 
                                                length_penalty=1.0,
                                                no_repeat_ngram_size=None,
                                                early_stopping=False,
                                                num_beams=1)

                generated = tokenizer.batch_decode(tok_ids.get('sequences'), skip_special_tokens=True)

                os.remove(structure_filename)
                os.remove(graph_filename)
                os.remove(process_filename)        
                    
                return generated[0].replace('<|stop_token|>', '').replace('<|graph_token|>', '')
            else:
                os.remove(structure_filename)
                os.remove(graph_filename)
                os.remove(process_filename) 
                return self.decoder.generate(input_ids=inputs['decoder_input_ids'],
                                         encoder_outputs=encoder_state, 
                                         use_cache=True,
                                        encoder_attention_mask=inputs['attention_mask'], 
                                        length_penalty=1.0,
                                        no_repeat_ngram_size=None,
                                        early_stopping=False,
                                         streamer=streamer, 
                                         max_new_tokens=max_new_tokens, 
                                         do_sample=do_sample, 
                                         top_p=top_p,
                                         top_k=top_k, 
                                         temperature=temperature, 
                                         num_beams=1, 
                                         repetition_penalty=repetition_penalty)
            
        else:
            seq = esmtokenizer([protein_sequence], add_special_tokens=True, truncation=True, max_length=1021, padding='max_length', return_tensors="pt")
            inputs={}
            inputs['encoder_input_ids'] = seq['input_ids']
            inputs['attention_mask'] = seq['attention_mask']
            inputs['decoder_input_ids'] = inputs['encoder_input_ids'][:,0:1].clone()
            inputs['decoder_input_ids'][:,0] = tokenizer.bos_token_id
            
            self.to(device)
            inputs = {k: v.to(device=device, non_blocking=True) if hasattr(v, 'to') else v for k, v in inputs.items()}
            encoder_state = dict()
            encoder_state['hidden_states'] = self(**inputs, get_graph_emb=True, output_attentions=True)
            generated = tokenizer.batch_decode(self.decoder.generate(input_ids=inputs['decoder_input_ids'], encoder_outputs=encoder_state, use_cache=True), skip_special_tokens=True)
            
            return generated[0].replace('<|stop_token|>', '').replace('<|graph_token|>', '')
    
    @torch.no_grad()
    def generate(self,
                inputs: Optional[torch.Tensor] = None,
                generation_config: Optional[GenerationConfig] = None,
                logits_processor: Optional[LogitsProcessorList] = None,
                stopping_criteria: Optional[StoppingCriteriaList] = None,
                prefix_allowed_tokens_fn: Optional[Callable[[int, torch.Tensor], List[int]]] = None,
                synced_gpus: Optional[bool] = None,
                assistant_model: Optional["PreTrainedModel"] = None,
                streamer: Optional["BaseStreamer"] = None,
                **kwargs,
            ):
        encoder_state = self(**kwargs, get_graph_emb=True)
        input_ids = kwargs['decoder_input_ids']
        attention_mask = kwargs['decoder_attention_mask']
        kwargs['encoder_attention_mask'] = kwargs['attention_mask']
        if not self.config.cross_esm_graph and self.config.rgcn and self.config.esm:
            t_add = torch.ones((kwargs['encoder_attention_mask'].size(0), 1)).to(kwargs['encoder_attention_mask'].get_device())
            kwargs['encoder_attention_mask'] = torch.cat((t_add, kwargs['encoder_attention_mask']), dim=1) 
        for key in ['edge_index', 'edge_type', 'x', 'encoder_input_ids', 'decoder_input_ids', 'decoder_attention_mask', 'batch', 'attention_mask', 'max_length',
                    '_num_nodes', 'node_id', 'name', 'sequence', 'distance_matrix', 'distance', 'coordinates', 'ptr', 'num_nodes',]:
            if key in kwargs.keys():
                kwargs.pop(key)
        return self.decoder.generate(input_ids=input_ids,
                                     generation_config=generation_config,
                                     logits_processor=logits_processor,
                                     stopping_criteria=stopping_criteria,
                                     prefix_allowed_tokens_fn=prefix_allowed_tokens_fn,
                                     synced_gpus=synced_gpus,
                                     assistant_model=assistant_model,
                                     streamer=streamer,
                                     encoder_outputs={'hidden_states': encoder_state, 'attentions':0},
                                     **kwargs
                                     )