Prot2Text-Base-v1-1 / pdb2graph.py
habdine's picture
Upload code
4636dc3 verified
raw
history blame
6.88 kB
import multiprocessing
import os
from tqdm import tqdm
from sklearn.preprocessing import MultiLabelBinarizer
from torch_geometric.data import Data
import torch
import numpy as np
from .conversion import convert_nx_to_pyg_data
from graphein.protein.config import ProteinGraphConfig, DSSPConfig
from graphein.protein.features.nodes.amino_acid import amino_acid_one_hot, meiler_embedding, expasy_protein_scale, hydrogen_bond_acceptor, hydrogen_bond_donor
from graphein.protein.features.nodes.dssp import phi, psi, asa, rsa, secondary_structure
from graphein.protein.edges.distance import (add_peptide_bonds,
add_hydrogen_bond_interactions,
add_disulfide_interactions,
add_ionic_interactions,
add_delaunay_triangulation,
add_distance_threshold,
add_sequence_distance_edges,
add_k_nn_edges)
from functools import partial
from .graphs import *
from .utils_dataset import *
import os
import sys
import subprocess
import wget
class PDB2Graph():
def __init__(self, root, output_folder, config, n_processors=int(multiprocessing.cpu_count())):
self.root = root
self.output_folder = output_folder
self.map_secondary_structure = {'-':0, 'H':1, 'B':2, 'E':3, 'G':4, 'I':5, 'T':6, 'S':7}
self.init_ohe_edge_type()
self.config = config
self.features = ['phi', 'psi', 'rsa', 'asa', 'ss', 'expasy']
self.n_processors = n_processors
self.raw_dir = root
self.processed_dir = self._processed_dir()
self.raw_file_names = self._raw_file_names()
self.processed_file_names = self._processed_file_names()
def _processed_dir(self):
#processed_dir = os.path.join(os.path.split(self.root)[0], "processed_new")
if not os.path.exists(self.output_folder):
os.makedirs(self.output_folder)
return self.output_folder
def _raw_file_names(self):
return os.listdir(self.raw_dir)
def _processed_file_names(self):
return [self.pdb2pathdata(pdb_path.split(".")[0]) for pdb_path in self.raw_file_names]
def create_nx_graph(self, path_to_structure):
return construct_graph(self.config, pdb_path = path_to_structure)
def create_pyg_graph(self, path_to_structure):
pyg_graph = convert_nx_to_pyg_data(self.create_nx_graph(path_to_structure))
graph = Data(edge_index = pyg_graph.edge_index,
num_nodes = len(pyg_graph.node_id),
node_id = pyg_graph.node_id,
name = pyg_graph.name[0],
sequence = getattr(pyg_graph, f"sequence_{pyg_graph.chain_id[0]}"),
distance_matrix = pyg_graph.dist_mat,
distance = pyg_graph.distance,
coordinates = torch.FloatTensor(np.array(pyg_graph.coords[0])))
#create the features
x = np.array([np.argmax(pyg_graph.amino_acid_one_hot, axis=1)]).reshape(-1,1)
for feat in self.features:
if feat == "ss":
feature = np.array([[self.map_secondary_structure.get(feat_node, 0)] \
for feat_node in pyg_graph[feat]])
else:
feature = np.array(pyg_graph[feat])
if len(feature.shape) == 1:
feature = feature.reshape(-1,1)
x = np.concatenate((x, feature), axis = 1)
graph.edge_type = self.mlb.transform(pyg_graph.kind)
graph.x = torch.FloatTensor(x)
# y = self.annotations[graph.name.split("_")[0]]
# if self.task == 'GeneOntology' :
# graph.y_mf = torch.FloatTensor(y["mf"])
# graph.y_cc = torch.FloatTensor(y["cc"])
# graph.y_bp = torch.FloatTensor(y["bp"])
# else:
# graph.y_ec = torch.FloatTensor(y["ec"])
return graph
def init_ohe_edge_type(self):
self.mlb = MultiLabelBinarizer(classes = ['peptide_bond', 'sequence_distance_2', 'sequence_distance_3'
, 'distance_threshold', 'delaunay', 'hbond', 'k_nn'])
self.mlb.fit([['peptide_bond', 'sequence_distance_2', 'sequence_distance_3'
, 'distance_threshold', 'delaunay', 'hbond', 'k_nn']])
def process(self):
"""Convert the PDB files into torch geometric graphs"""
# self.pdb2graph = PDB2Graph(self.config)
to_be_processed = self.get_files_to_process()
# pool = multiprocessing.Pool(self.n_processors)
# for _ in tqdm(pool.imap_unordered(self.graph_creation, to_be_processed), total=len(to_be_processed)):
# continue
# pool.close()
# pool.join()
processes = []
for prot in tqdm(to_be_processed):
p = multiprocessing.Process(target=self.graph_creation, args=(prot,))
processes.append(p)
p.start()
for process in processes:
process.join()
def graph_creation(self, pdb):
"""Create a graph from the PDB file"""
# Define the path_to_structure from the pdb name file
path_to_structure = self.pdb2pathstructure(pdb)
# Convert the structure into a graph
g = self.create_pyg_graph(path_to_structure)
# Save the graph
torch.save(g, os.path.join(self.output_folder, self.pdb2pathdata(pdb)))
return None
def pdb2pathdata(self, pdb):
return pdb+'.pt'
def pdb2pathstructure(self, pdb):
return os.path.join(self.raw_dir, pdb+'.pdb')
def get_files_to_process(self):
RAW_FILES = self.processed_file_names
PROCESSED_FILES = os.listdir(self.processed_dir)
to_be_processed = set(RAW_FILES).difference(set(PROCESSED_FILES))
to_be_processed = [path.split('.')[0] for path in to_be_processed]
return to_be_processed
def download_alphafold_structure(
uniprot_id: str,
out_dir: str,
version: int = 4
):
BASE_URL = "https://alphafold.ebi.ac.uk/files/"
uniprot_id = uniprot_id.upper()
query_url = f"{BASE_URL}AF-{uniprot_id}-F1-model_v{version}.pdb"
structure_filename = os.path.join(out_dir, f"AF-{uniprot_id}-F1-model_v{version}.pdb")
if os.path.exists(structure_filename):
return structure_filename
try:
structure_filename = wget.download(query_url, out=out_dir)
except:
print('Error.. could not download: ', f"AF-{uniprot_id}-F1-model_v{version}.pdb")
return None
return structure_filename