Prot2Text-Small-v1-0 / modeling_prot2text.py
habdine's picture
Upload code
1fcde9f verified
from transformers import GPT2Config, AutoTokenizer, GPT2Config
from transformers import PretrainedConfig, PreTrainedModel
import transformers
from typing import Optional, Tuple, Callable
import torch
import torch.nn as nn
from transformers.modeling_utils import PreTrainedModel, PretrainedConfig
from .utils import CABlock, _GPT2LMHeadModel
from .configuration_prot2text import Prot2TextConfig
import os
import numpy as np
from transformers.generation.configuration_utils import GenerationConfig
from transformers.generation.logits_process import LogitsProcessorList
from transformers.generation.stopping_criteria import StoppingCriteriaList
from .pdb2graph import PDB2Graph, download_alphafold_structure
from .graphs import *
from .utils_dataset import *
try:
from graphein.protein.config import ProteinGraphConfig, DSSPConfig
from graphein.protein.features.nodes.amino_acid import amino_acid_one_hot, meiler_embedding, expasy_protein_scale, hydrogen_bond_acceptor, hydrogen_bond_donor
from graphein.protein.features.nodes.dssp import phi, psi, asa, rsa, secondary_structure
from graphein.protein.edges.distance import (add_peptide_bonds,
add_hydrogen_bond_interactions,
add_distance_threshold,
)
except ImportError:
raise Exception('You need to install graphein from source in addition to DSSP to use this model please refer to https://github.com/a-r-j/graphein and https://ssbio.readthedocs.io/en/latest/instructions/dssp.html')
try:
from torch_geometric.nn import RGCNConv, global_mean_pool
except ImportError:
raise Exception('You need to install torch geometric and its dependecies to use this model please refer to https://pytorch-geometric.readthedocs.io/en/latest/install/installation.html')
class EncoderRGCN(PreTrainedModel):
'''
This class implement the RGCN encoder to encode the protein structure
'''
def __init__(self, input_dim, hidden_dim=512, n_layers=6, emb_dim=512, dropout=0.2, num_relation=7, prot2text_version='1.0'):
super(EncoderRGCN, self).__init__(PretrainedConfig(name='RGCN'))
self.n_layers = n_layers
self.output_dim = emb_dim
self.prot2text_version = prot2text_version
self.fc0 = nn.Linear(input_dim, hidden_dim)
self.batchnorm_final = nn.BatchNorm1d(hidden_dim)
self.batch_norms = nn.ModuleList()
self.batch_norms.append(nn.BatchNorm1d(hidden_dim))
lst = list()
lst.append(RGCNConv(hidden_dim, hidden_dim, num_relations=num_relation))
for i in range(n_layers-1):
lst.append(RGCNConv(hidden_dim,hidden_dim, num_relations=num_relation))
self.conv = nn.ModuleList(lst)
self.fc1 = nn.Linear(hidden_dim, hidden_dim)
self.fc2 = nn.Linear(hidden_dim, self.output_dim)
self.dropout = nn.Dropout(p=dropout)
self.relu = nn.LeakyReLU()
self.batchnorm = nn.BatchNorm1d(hidden_dim)
self.main_input_name = 'nothing'
def forward(self, x:Optional[torch.FloatTensor] = None,
edge_index:Optional[torch.LongTensor] = None,
edge_type:Optional[torch.LongTensor] = None,
batch:Optional[torch.LongTensor] = None,
**kargs):
#construct pyg edge index shape (2, num_edges) from edge_list
x = self.relu(self.fc0(x))
for i in range(self.n_layers):
x = self.conv[i](x, edge_index, edge_type)
out = global_mean_pool(x, batch)
out = self.relu(self.fc1(out))
out = self.relu(self.fc2(out))
return out.unsqueeze(1)
class Prot2TextModel(PreTrainedModel):
config_class = Prot2TextConfig
_keys_to_ignore_on_load_missing = [r"transformer"]
base_model_prefix = "decoder"
def __init__(self, config):
super().__init__(config)
self.gpt_config = GPT2Config.from_dict(config.gpt_config)
# if we are using RGCN to encode the protein's structure, define the RGCN encoder
if config.rgcn:
self.encoder = EncoderRGCN(input_dim=config.rgcn_input_dim, hidden_dim=self.gpt_config.n_embd, n_layers=config.rgcn_n_layers, emb_dim=self.gpt_config.n_embd, prot2text_version=self.config.prot2text_version)
# define the GPT2 decoder
self.decoder = _GPT2LMHeadModel(self.gpt_config)
# if using ESM to encode protein's sequence, define the ESM layer, the Projection layer and the fusion layer
if config.esm:
self.esm_config = PretrainedConfig.from_dict(config.esm_config)
self.esm = transformers.EsmModel(self.esm_config)
self.to_embedding = nn.Linear(self.esm_config.hidden_size, self.gpt_config.n_embd)
if config.cross_esm_graph and config.rgcn:
self.h = nn.ModuleList([CABlock(self.gpt_config, layer_idx=i) for i in range(4)])
self.ln_f = nn.LayerNorm(self.gpt_config.n_embd, eps=self.gpt_config.layer_norm_epsilon)
self.config = config
def get_encoder(self):
return self.encoder
def get_decoder(self):
return self.decoder
def get_input_embeddings(self):
if hasattr(self, "transformer"):
return self.transformer.wte
return self.decoder.transformer.wte
def warm_up(self, gpt_model=None, esm_model=None):
if esm_model is not None:
self.esm = transformers.EsmModel.from_pretrained(esm_model)
if gpt_model is not None:
self.decoder = _GPT2LMHeadModel.from_pretrained(gpt_model, add_cross_attention=True, use_cache=False)
self.decoder.resize_token_embeddings(self.gpt_config.vocab_size)
self.decoder.config = self.gpt_config
def forward(self,
encoder_input_ids: Optional[torch.LongTensor] = None,
edge_index: Optional[torch.LongTensor] = None,
batch: Optional[torch.LongTensor] = None,
x: Optional[torch.FloatTensor] = None,
edge_type: Optional[torch.LongTensor] = None,
decoder_input_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None,
past_key_values_graph_esm: Optional[Tuple[Tuple[torch.Tensor]]] = None,
decoder_attention_mask: Optional[torch.FloatTensor] = None,
attention_mask: Optional[torch.FloatTensor] = None,
token_type_ids: Optional[torch.LongTensor] = None,
position_ids: Optional[torch.LongTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
encoder_hidden_states: Optional[torch.Tensor] = None,
encoder_attention_mask: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
get_graph_emb: Optional[bool] = False,
**delete_args,
):
use_cache = use_cache if use_cache is not None else self.gpt_config.use_cache
return_dict = return_dict if return_dict is not None else self.gpt_config.use_return_dict
if decoder_input_ids is not None and len(decoder_input_ids.size()) == 3:
decoder_input_ids = decoder_input_ids.squeeze(0)
if x is not None and self.config.rgcn:
graph_emb = self.encoder(x, edge_index, edge_type, batch)
graph_mask = None
if self.config.esm:
if self.config.prot2text_version=='1.0':
if encoder_input_ids.size()[1] != 1021:
raise ValueError("For this version of the model you need to PAD/Truncate the amino acid sequence for the ESM model to 1021")
esm_emb = self.esm(input_ids=encoder_input_ids, attention_mask=attention_mask, return_dict=return_dict).last_hidden_state
esm_emb = self.to_embedding(esm_emb)
if not self.config.cross_esm_graph and self.config.rgcn:
graph_emb = torch.cat((graph_emb, esm_emb), dim=1)
t_add = torch.ones((attention_mask.size(0), 1)).to(attention_mask.get_device())
attention_mask = torch.cat((t_add, attention_mask), dim=1)
elif self.config.cross_esm_graph and self.config.rgcn:
if past_key_values_graph_esm is None:
past_length = 0
past_key_values_graph_esm = tuple([None] * len(self.h))
else:
past_length = past_key_values_graph_esm[0][0].size(-2)
output_shape = esm_emb.size()
all_self_attentions = () if output_attentions else None
all_cross_attentions = () if output_attentions and self.gpt_config.add_cross_attention else None
all_hidden_states = () if output_hidden_states else None
for i, (block, layer_past) in enumerate(zip(self.h, past_key_values_graph_esm)):
outputs = block(
esm_emb,
layer_past=layer_past,
attention_mask=attention_mask,
encoder_hidden_states=graph_emb,
encoder_attention_mask=graph_mask,
use_cache=use_cache,
output_attentions=False,
)
esm_emb = outputs[0]
esm_emb = self.ln_f(esm_emb)
esm_emb = esm_emb.view(output_shape)
graph_emb = esm_emb
else:
graph_emb = esm_emb
else:
attention_mask = None
if self.config.prot2text_version=='1.0':
attention_mask = None
if get_graph_emb:
return graph_emb
transformer_outputs = self.decoder(input_ids=decoder_input_ids,
past_key_values=past_key_values,
attention_mask=decoder_attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
encoder_hidden_states=graph_emb,
encoder_attention_mask=attention_mask,
labels=labels,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
return transformer_outputs
@torch.no_grad()
def generate_protein_description(self,
protein_pdbID=None,
protein_sequence=None,
edge_index: Optional[torch.LongTensor] = None,
x: Optional[torch.FloatTensor] = None,
edge_type: Optional[torch.LongTensor] = None,
tokenizer=None,
device='cpu'
):
if self.config.esm and not self.config.rgcn and protein_sequence==None:
raise ValueError(
"The model you are trying to use is based only on protein sequence, please provide an amino-acid protein_sequence"
)
if self.config.rgcn and protein_pdbID==None and (x==None or edge_index==None or edge_type==None):
raise ValueError(
"The model you are trying to use is based on protein structure, please provide a AlphaFold ID (you must have to have internet connection using protein_pdbID, or provide the triplet inputs: x (node features), edge_index and edge_type"
)
if self.config.esm:
esmtokenizer = AutoTokenizer.from_pretrained(self.config.esm_model_name)
if protein_pdbID==None and protein_sequence==None:
raise ValueError(
"you need to provide either a protein AlphaFold Id or an amino-acid sequence"
)
if protein_pdbID!=None:
config = {"node_metadata_functions": [amino_acid_one_hot,
expasy_protein_scale,
meiler_embedding,
hydrogen_bond_acceptor, hydrogen_bond_donor
],
"edge_construction_functions": [add_peptide_bonds,
add_hydrogen_bond_interactions,
partial(add_distance_threshold, long_interaction_threshold=3, threshold=10.),],
"graph_metadata_functions":[asa,phi, psi, secondary_structure, rsa],
"dssp_config": DSSPConfig()}
config = ProteinGraphConfig(**config)
PATH_TO_DATA = f"~/.tmp/pdb/pdb"
OUTPUT_FOLDER = f"~/.tmp/pdb/raw"
save_dir = f"~/.tmp/pdb/"
isExist = os.path.exists(PATH_TO_DATA)
if not isExist:
os.makedirs(PATH_TO_DATA)
isExist = os.path.exists(OUTPUT_FOLDER)
if not isExist:
os.makedirs(OUTPUT_FOLDER)
isExist = os.path.exists(save_dir+'processed')
if not isExist:
os.makedirs(save_dir+'processed')
structure_filename = download_alphafold_structure(uniprot_id=protein_pdbID, out_dir=PATH_TO_DATA)
if structure_filename is None:
raise ValueError("Error! the ID does not exist in AlphaFoldDB or you do not have internet connection")
graph_filename = structure_filename.split('/')
graph_filename[-2] = 'raw'
graph_filename[-1] = graph_filename[-1].replace('.pdb', '.pt')
graph_filename = '/'.join(graph_filename)
process_filename = structure_filename.split('/')
process_filename[-2] = 'processed'
process_filename[-1] = process_filename[-1].replace('.pdb', '.pt')
process_filename = '/'.join(process_filename)
try:
gpdb = PDB2Graph(root = PATH_TO_DATA, output_folder = OUTPUT_FOLDER, config=config, n_processors=1).create_pyg_graph(structure_filename)
seq = esmtokenizer(gpdb.sequence, add_special_tokens=True, truncation=True, max_length=1021, padding='max_length',return_tensors="pt") #
torch.save(gpdb, graph_filename)
gpdb.edge_type = [np.array(gpdb.edge_type.transpose(0,1))]
gpdb.encoder_input_ids = seq['input_ids']
gpdb.attention_mask = seq['attention_mask']
torch.save(gpdb, process_filename)
except:
os.remove(structure_filename)
raise ValueError('creating graphs did not work, probably the pdb file of alphaFold is damaged')
self.eval()
inputs = gpdb
inputs = inputs.to_dict()
inputs['edge_type'] = torch.cat([torch.tensor(inputs['edge_type'][i]) for i in range(len(inputs['edge_type']))], dim=0)
inputs['edge_type'] = torch.argmax(inputs['edge_type'], dim=1)
for key in ['num_nodes', 'node_id', 'name', 'sequence', 'distance_matrix', 'distance', 'coordinates']:
inputs.pop(key)
inputs['decoder_input_ids'] = inputs['encoder_input_ids'][:,0:1].clone()
inputs['decoder_input_ids'][:,0] = tokenizer.bos_token_id
inputs["decoder_attention_mask"] = torch.ones(inputs['decoder_input_ids'].shape[0], 1)
self.to(device)
inputs = {k: v.to(device=device, non_blocking=True) if hasattr(v, 'to') else v for k, v in inputs.items()}
encoder_state = dict()
encoder_state['hidden_states'] = self(**inputs, get_graph_emb=True, output_attentions=True)
encoder_state['attentions'] = inputs['attention_mask']
for key in ['edge_index', 'edge_type', 'x', 'encoder_input_ids']:
inputs.pop(key)
tok_ids = self.decoder.generate(input_ids=inputs['decoder_input_ids'],
encoder_outputs=encoder_state,
use_cache=True,
output_attentions=False,
output_scores=False,
return_dict_in_generate=True,
encoder_attention_mask=inputs['attention_mask'],
length_penalty=1.0,
no_repeat_ngram_size=None,
early_stopping=False,
num_beams=1)
generated = tokenizer.batch_decode(tok_ids.get('sequences'), skip_special_tokens=True)
os.remove(structure_filename)
os.remove(graph_filename)
os.remove(process_filename)
return generated[0].replace('<|stop_token|>', '').replace('<|graph_token|>', '')
else:
seq = esmtokenizer([protein_sequence], add_special_tokens=True, truncation=True, max_length=1021, padding='max_length', return_tensors="pt")
inputs={}
inputs['encoder_input_ids'] = seq['input_ids']
inputs['attention_mask'] = seq['attention_mask']
inputs['decoder_input_ids'] = inputs['encoder_input_ids'][:,0:1].clone()
inputs['decoder_input_ids'][:,0] = tokenizer.bos_token_id
self.to(device)
inputs = {k: v.to(device=device, non_blocking=True) if hasattr(v, 'to') else v for k, v in inputs.items()}
encoder_state = dict()
encoder_state['hidden_states'] = self(**inputs, get_graph_emb=True, output_attentions=True)
generated = tokenizer.batch_decode(self.decoder.generate(input_ids=inputs['decoder_input_ids'], encoder_outputs=encoder_state, use_cache=True), skip_special_tokens=True)
return generated[0].replace('<|stop_token|>', '').replace('<|graph_token|>', '')
@torch.no_grad()
def generate(self,
inputs: Optional[torch.Tensor] = None,
generation_config: Optional[GenerationConfig] = None,
logits_processor: Optional[LogitsProcessorList] = None,
stopping_criteria: Optional[StoppingCriteriaList] = None,
prefix_allowed_tokens_fn: Optional[Callable[[int, torch.Tensor], List[int]]] = None,
synced_gpus: Optional[bool] = None,
assistant_model: Optional["PreTrainedModel"] = None,
streamer: Optional["BaseStreamer"] = None,
**kwargs,
):
encoder_state = self(**kwargs, get_graph_emb=True)
input_ids = kwargs['decoder_input_ids']
attention_mask = kwargs['decoder_attention_mask']
kwargs['encoder_attention_mask'] = kwargs['attention_mask']
if not self.config.cross_esm_graph and self.config.rgcn and self.config.esm:
t_add = torch.ones((kwargs['encoder_attention_mask'].size(0), 1)).to(kwargs['encoder_attention_mask'].get_device())
kwargs['encoder_attention_mask'] = torch.cat((t_add, kwargs['encoder_attention_mask']), dim=1)
for key in ['edge_index', 'edge_type', 'x', 'encoder_input_ids', 'decoder_input_ids', 'decoder_attention_mask', 'batch', 'attention_mask', 'max_length',
'_num_nodes', 'node_id', 'name', 'sequence', 'distance_matrix', 'distance', 'coordinates', 'ptr', 'num_nodes',]:
if key in kwargs.keys():
kwargs.pop(key)
return self.decoder.generate(input_ids=input_ids,
generation_config=generation_config,
logits_processor=logits_processor,
stopping_criteria=stopping_criteria,
prefix_allowed_tokens_fn=prefix_allowed_tokens_fn,
synced_gpus=synced_gpus,
assistant_model=assistant_model,
streamer=streamer,
encoder_outputs={'hidden_states': encoder_state, 'attentions':0},
**kwargs
)