File size: 6,439 Bytes
17bd62d 2a447af 17bd62d 2a447af 17bd62d 2a447af 17bd62d 2a447af 17bd62d 2a447af |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 |
from dataclasses import dataclass, field
from typing import Optional
import pandas as pd
import os
import torch
from transformers import VisionEncoderDecoderModel, TrOCRProcessor, Seq2SeqTrainer, Seq2SeqTrainingArguments, default_data_collator, EarlyStoppingCallback, TrainerCallback, TrainingArguments, TrainerState, TrainerControl
from peft import LoraConfig, get_peft_model
from transformers import VisionEncoderDecoderConfig
from data import AphaPenDataset
import evaluate
from sklearn.model_selection import train_test_split
from src.calibrator import EncoderDecoderCalibrator
from src.loss import MarginLoss, KLRegularization
from src.similarity import CERSimilarity
from datetime import datetime
from torch.utils.data import ConcatDataset
import wandb
# @dataclass
# class ScriptArguments:
# """
# The name of the OCR model we wish to fine with Seq2SeqTrainer
# """
# samp_size: Optional[int] = field(default=0, metadata={"help": "the additional sample size"})
# parser = HfArgumentParser(ScriptArguments)
# script_args = parser.parse_args_into_dataclasses()[0]
samp_list = [1, 15000, 30000, 45000, 60000, 70000]
model_name = "microsoft/trocr-base-handwritten"
# # Step 1: Load the dataset
df_path = "/mnt/data1/Datasets/AlphaPen/" + "training_data.csv"
df = pd.read_csv(df_path)
df.dropna(inplace=True)
train_df, test_df = train_test_split(df, test_size=0.02, random_state=0)
# we reset the indices to start from zero
train_df.reset_index(drop=True, inplace=True)
test_df.reset_index(drop=True, inplace=True)
df_path_b2= "/mnt/data1/Datasets/AlphaPen/" + "training_b2.csv"
df_b2 = pd.read_csv(df_path_b2)
df_b2.dropna(inplace=True)
train_df_b2, test_df_b2 = train_test_split(df_b2, test_size=0.01, random_state=0)
# we reset the indices to start from zero
train_df_b2.reset_index(drop=True, inplace=True)
test_df_b2.reset_index(drop=True, inplace=True)
root_dir = "/mnt/data1/Datasets/OCR/Alphapen/clean_data/final_cropped_rotated_"
root_dir_b2 = "/mnt/data1/Datasets/OCR/Alphapen/DataBatch2/clean_data/cropped_data/cropped_"
processor = TrOCRProcessor.from_pretrained(model_name)
train_dataset_b1 = AphaPenDataset(root_dir=root_dir, df=train_df.iloc[:100,:], processor=processor)
eval_dataset_b1 = AphaPenDataset(root_dir=root_dir, df=test_df.iloc[:100,:], processor=processor)
eval_dataset_b2 = AphaPenDataset(root_dir=root_dir_b2, df=test_df_b2.iloc[:100,:], processor=processor)
# train_dataset = ConcatDataset([train_dataset_b1, train_dataset_b2])
eval_dataset = ConcatDataset([eval_dataset_b1, eval_dataset_b2])
# config = VisionEncoderDecoderConfig.from_pretrained(model_name)
# config.decoder.vocab_size = config.decoder.decoder_vocab_size
# Step 2: Load the model
model = VisionEncoderDecoderModel.from_pretrained(model_name)
# set special tokens used for creating the decoder_input_ids from the labels
model.config.decoder_start_token_id = processor.tokenizer.cls_token_id
model.config.pad_token_id = processor.tokenizer.pad_token_id
# make sure vocab size is set correctly
# model.config.vocab_size = model.config.decoder.vocab_size
# for peft
# model.vocab_size = model.config.decoder.vocab_size
# set beam search parameters
model.config.eos_token_id = processor.tokenizer.sep_token_id
model.config.max_length = 64
model.config.early_stopping = True
model.config.no_repeat_ngram_size = 3
model.config.length_penalty = 2.0
model.config.num_beams = 4
# print(model.config)
# LoRa
lora_config = LoraConfig(
r=16,
lora_alpha=16,
lora_dropout=0.1,
target_modules=[
'query',
'key',
'value',
'intermediate.dense',
'output.dense',
#'wte',
#'wpe',
#'c_attn',
#'c_proj',
#'q_attn',
#'c_fc'
],
# task_type="SEQ_2_SEQ_LM"
)
model = get_peft_model(model, lora_config)
# model.add_adapter(lora_config)
# print(model.config)
# tokenizer = processor.tokenizer
# sim = CERSimilarity(tokenizer)
# loss = MarginLoss(sim, beta=0.1, num_samples=60)
# reg = KLRegularization(model)
# calibrator = EncoderDecoderCalibrator(model, loss, reg, 15, 15)
# from transformers.trainer_utils import PREFIX_CHECKPOINT_DIR
for samp in samp_list:
os.environ["WANDB_PROJECT"] = "Alphapen-TrOCR"
train_dataset_b2 = AphaPenDataset(root_dir=root_dir_b2, df=train_df_b2.iloc[:samp,:], processor=processor)
train_dataset = ConcatDataset([train_dataset_b1, train_dataset_b2])
# # Step 3: Define the training arguments
training_args = Seq2SeqTrainingArguments(
predict_with_generate=True,
evaluation_strategy="steps",
per_device_train_batch_size=8,
per_device_eval_batch_size=8,
bf16=True,
bf16_full_eval=True,
output_dir="./",
logging_steps=100,
save_steps=1000,
eval_steps=500,
report_to="wandb",
optim="adamw_torch_fused",
lr_scheduler_type="cosine",
gradient_accumulation_steps=2,
learning_rate=1.0e-4,
max_steps=15000,
# run_name=f"trocr-LoRA-{datetime.now().strftime('%Y-%m-%d-%H-%M-%s')}",
run_name="trocr-LoRA-" + str(samp),
push_to_hub=True,
hub_model_id="hadrakey/alphapen_new_large_" + str(samp),
)
# Step 4: Define a metric
def compute_metrics(pred):
# accuracy_metric = evaluate.load("precision")
cer_metric = evaluate.load("cer")
labels_ids = pred.label_ids
pred_ids = pred.predictions
pred_str = processor.batch_decode(pred_ids, skip_special_tokens=True)
labels_ids[labels_ids == -100] = processor.tokenizer.pad_token_id
label_str = processor.batch_decode(labels_ids, skip_special_tokens=True)
pred_str = [word.lower() for word in pred_str]
label_str = [word.lower() for word in label_str]
cer = cer_metric.compute(predictions=pred_str, references=label_str)
# accuracy = accuracy_metric.compute(predictions=pred_ids.tolist(), references=labels_ids.tolist())
return {"cer": cer}
# # Step 5: Define the Trainer
trainer = Seq2SeqTrainer(
model=model,
tokenizer=processor.feature_extractor,
args=training_args,
compute_metrics=compute_metrics,
train_dataset=train_dataset,
eval_dataset=eval_dataset,
data_collator=default_data_collator,
# callbacks=[SavePeftModelCallback]
)
trainer.train()
wandb.finish() |