File size: 4,871 Bytes
f4c8fed |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 |
import torch
import torch.nn as nn
import torch.nn.functional as F
from transformers import (
AutoTokenizer,
AutoModelForSeq2SeqLM,
LogitsProcessorList,
MinLengthLogitsProcessor,
BeamSearchScorer,
StoppingCriteriaList,
MaxLengthCriteria,
T5ForConditionalGeneration,
T5Tokenizer
)
class EncoderDecoderCalibrator(nn.Module):
def __init__(self, model, loss, regularization, beam_size, num_candidates, max_length=16, alpha=0.01):
super().__init__()
self.model = model
self.loss = loss
self.regularization = regularization
self.alpha = alpha
assert beam_size >= num_candidates, "num_candidates should be less or equal than beam_size"
self.beam_size = beam_size
self.num_candidates = num_candidates
self.min_length = 0
self.max_length = max_length
self.length_penalty = 1.0
self.eos_token_id = self.model.config.eos_token_id
self.decoder_start_token_id = self.model.config.decoder_start_token_id
self.pad_token_id = self.model.config.pad_token_id
def generate_candidates(self, encoder_outputs):
B, L = encoder_outputs.last_hidden_state.shape[:2]
beam_scorer = BeamSearchScorer(
batch_size=B,
num_beams=self.beam_size,
device=encoder_outputs.last_hidden_state.device,
length_penalty=self.length_penalty,
do_early_stopping=False,
num_beam_hyps_to_keep=self.num_candidates,
max_length=self.max_length,
)
stopping_criteria = StoppingCriteriaList()
stopping_criteria.append(
MaxLengthCriteria(
max_length=self.max_length,
max_position_embeddings=self.max_length,
)
)
logits_processor = LogitsProcessorList(
[
MinLengthLogitsProcessor(self.min_length, eos_token_id=self.eos_token_id),
]
)
encoder_outputs.last_hidden_state = encoder_outputs.last_hidden_state.repeat_interleave(self.beam_size, 0)
input_ids = torch.full((B * self.beam_size, 1), self.decoder_start_token_id, device=self.model.device, dtype=torch.long)
# print(input_ids.shape)
return self.model.beam_search(
input_ids,
beam_scorer,
logits_processor=logits_processor,
pad_token_id=self.pad_token_id,
eos_token_id=self.eos_token_id,
output_scores=True,
output_logits=True,
output_hidden_states=True,
stopping_criteria=stopping_criteria,
return_dict_in_generate=True,
encoder_outputs=encoder_outputs
)
def forward(self, input_ids, labels, **kwargs):
# print(input_ids.shape)
B, C, L,H = input_ids.shape
# generate output of encoder
encoder_outputs = self.model.get_encoder()(input_ids, return_dict=True)
candidates = self.generate_candidates(encoder_outputs)
sequences = candidates.sequences
# print(sequences.shape)
# print(B, self.num_candidates)
sequences_len = (sequences != 0).sum(-1)
transition_scores = self.model.compute_transition_scores(sequences, candidates.scores, candidates.beam_indices, normalize_logits=False)
sequences_scores = transition_scores.sum(-1) / sequences_len
loss = self.loss(sequences.view(B, self.num_candidates, -1), labels, sequences_scores.view((B, -1)))
del candidates
# TODO: investigate if we can use the scores returned by the beam search
#scores_reg = torch.stack(candidates.scores, dim=1)
scores_reg = F.log_softmax(self.model(decoder_input_ids=sequences, encoder_outputs=encoder_outputs).logits, dim=-1)
loss = loss + self.alpha * self.regularization(sequences, scores_reg, labels, encoder_outputs=encoder_outputs)
return {"loss": loss}
# def generate(self, input_ids, max_length=None, num_return_sequences=1, **kwargs):
# if max_length is None:
# max_length = self.max_length
# encoder_outputs = self.model.get_encoder()(input_ids, return_dict=True)
# print(encoder_outputs)
# output_ids = self.model.generate(
# encoder_outputs=encoder_outputs,
# max_length=max_length,
# num_return_sequences=num_return_sequences,
# do_sample=True, # Enable sampling
# top_k=50, # Set the top-k sampling parameter
# top_p=0.95, # Set the top-p (nucleus) sampling parameter
# num_beams=4, # Set the number of beams for beam search
# early_stopping=True, # Enable early stopping
# **kwargs
# )
# return output_ids
|