File size: 4,871 Bytes
f4c8fed
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
import torch
import torch.nn as nn
import torch.nn.functional as F

from transformers import (
    AutoTokenizer,
    AutoModelForSeq2SeqLM,
    LogitsProcessorList,
    MinLengthLogitsProcessor,
    BeamSearchScorer,
    StoppingCriteriaList,
    MaxLengthCriteria,
    T5ForConditionalGeneration,
    T5Tokenizer
)


class EncoderDecoderCalibrator(nn.Module):

    def __init__(self, model, loss, regularization, beam_size, num_candidates, max_length=16, alpha=0.01):

        super().__init__()
        
        self.model = model 
        
        self.loss = loss
        self.regularization = regularization
        self.alpha = alpha

        assert beam_size >= num_candidates, "num_candidates should be less or equal than beam_size"
        self.beam_size = beam_size
        self.num_candidates = num_candidates
        self.min_length = 0
        self.max_length = max_length

        self.length_penalty = 1.0
        
        self.eos_token_id = self.model.config.eos_token_id
        self.decoder_start_token_id = self.model.config.decoder_start_token_id
        self.pad_token_id = self.model.config.pad_token_id

    def generate_candidates(self, encoder_outputs):

        B, L = encoder_outputs.last_hidden_state.shape[:2]

        beam_scorer = BeamSearchScorer(
            batch_size=B,
            num_beams=self.beam_size,
            device=encoder_outputs.last_hidden_state.device,
            length_penalty=self.length_penalty,
            do_early_stopping=False,
            num_beam_hyps_to_keep=self.num_candidates,
            max_length=self.max_length,
        )

        stopping_criteria = StoppingCriteriaList()

        stopping_criteria.append(
            MaxLengthCriteria(
                max_length=self.max_length,
                max_position_embeddings=self.max_length,
            )
        )

        logits_processor = LogitsProcessorList(
            [
                MinLengthLogitsProcessor(self.min_length, eos_token_id=self.eos_token_id),
            ]
        )

        encoder_outputs.last_hidden_state = encoder_outputs.last_hidden_state.repeat_interleave(self.beam_size, 0)
        
        input_ids = torch.full((B * self.beam_size, 1), self.decoder_start_token_id, device=self.model.device, dtype=torch.long)
        # print(input_ids.shape)
        return self.model.beam_search(
            input_ids,
            beam_scorer,
            logits_processor=logits_processor,
            pad_token_id=self.pad_token_id,
            eos_token_id=self.eos_token_id,
            output_scores=True,
            output_logits=True,
            output_hidden_states=True,
            stopping_criteria=stopping_criteria,
            return_dict_in_generate=True,
            encoder_outputs=encoder_outputs
        )

    def forward(self, input_ids, labels, **kwargs):

        # print(input_ids.shape)
        B, C, L,H = input_ids.shape

        # generate output of encoder
    
        encoder_outputs = self.model.get_encoder()(input_ids, return_dict=True) 

        candidates = self.generate_candidates(encoder_outputs)
        
        sequences = candidates.sequences
        # print(sequences.shape)
        # print(B, self.num_candidates)
        sequences_len = (sequences != 0).sum(-1)
        
        transition_scores = self.model.compute_transition_scores(sequences, candidates.scores, candidates.beam_indices, normalize_logits=False) 

        sequences_scores = transition_scores.sum(-1) / sequences_len

        loss = self.loss(sequences.view(B, self.num_candidates, -1), labels, sequences_scores.view((B, -1)))
        del candidates
        # TODO: investigate if we can use the scores returned by the beam search
        #scores_reg = torch.stack(candidates.scores, dim=1)
        scores_reg = F.log_softmax(self.model(decoder_input_ids=sequences, encoder_outputs=encoder_outputs).logits, dim=-1)
        loss = loss + self.alpha * self.regularization(sequences, scores_reg, labels, encoder_outputs=encoder_outputs)

        return {"loss": loss}

    # def generate(self, input_ids, max_length=None, num_return_sequences=1, **kwargs):
    #     if max_length is None:
    #         max_length = self.max_length

    #     encoder_outputs = self.model.get_encoder()(input_ids, return_dict=True)
    #     print(encoder_outputs)
    #     output_ids = self.model.generate(
    #         encoder_outputs=encoder_outputs,
    #         max_length=max_length,
    #         num_return_sequences=num_return_sequences,
    #         do_sample=True,  # Enable sampling
    #         top_k=50,  # Set the top-k sampling parameter
    #         top_p=0.95,  # Set the top-p (nucleus) sampling parameter
    #         num_beams=4,  # Set the number of beams for beam search
    #         early_stopping=True,  # Enable early stopping
    #         **kwargs
    #     )

    #     return output_ids