hadrakey's picture
Training in progress, step 1000
f4c8fed verified
import torch
import torch.nn as nn
import torch.nn.functional as F
import random
class MarginLoss(nn.Module):
def __init__(self, similarity_fct, beta=0.1, num_samples=20):
super().__init__()
self.beta = beta
self.similarity_fct = similarity_fct
self.num_samples = num_samples
def forward(self, input_ids, target_ids, sequence_scores):
B = len(input_ids)
loss = 0.0
for b in range(B):
C = input_ids[b].shape[0]
indices = torch.arange(C)
# Sample indices for positive and negative examples
pos_indices = torch.multinomial(torch.ones(C) / C, self.num_samples, replacement=True)
neg_indices = torch.multinomial(torch.ones(C) / C, self.num_samples, replacement=True)
# Compute similarities for positive and negative examples
pos_sim = self.similarity_fct(input_ids[b][pos_indices], target_ids[b].unsqueeze(0).repeat(self.num_samples, 1))
neg_sim = self.similarity_fct(input_ids[b][neg_indices], target_ids[b].unsqueeze(0).repeat(self.num_samples, 1))
# Compute loss
loss_i = self.beta * (pos_sim - neg_sim) - sequence_scores[b][pos_indices] + sequence_scores[b][neg_indices]
loss_j = self.beta * (neg_sim - pos_sim) - sequence_scores[b][neg_indices] + sequence_scores[b][pos_indices]
loss += torch.sum(torch.relu(loss_i)) + torch.sum(torch.relu(loss_j))
return loss
class KLRegularization(nn.Module):
def __init__(self, model_ref):
super().__init__()
self.kl_loss = nn.KLDivLoss(reduction="batchmean")
self.model_ref = model_ref
def forward(self, inputs_ids, scores, targets_ids, **kwargs):
with torch.no_grad():
scores_ref = F.softmax(self.model_ref(decoder_input_ids=inputs_ids, **kwargs).logits, dim=-1)
return self.kl_loss(scores, scores_ref)
class CERegularization(nn.Module):
def __init__(self):
super().__init__()
self.nll_loss = nn.NLLLoss()
def forward(self, inputs_ids, scores, targets_ids, **kwargs):
return self.nll_loss(scores, targets_ids)