File size: 9,176 Bytes
3f86748 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 |
from dataclasses import dataclass, field
from typing import Optional
import pandas as pd
import torch
from accelerate import Accelerator
from datasets import load_dataset, Dataset, load_metric
from peft import LoraConfig
from tqdm import tqdm
from transformers import AutoModelForCausalLM, BitsAndBytesConfig, HfArgumentParser, TrainingArguments, VisionEncoderDecoderModel, TrOCRProcessor, Seq2SeqTrainer, Seq2SeqTrainingArguments, default_data_collator, EarlyStoppingCallback
from trl import SFTTrainer, is_xpu_available
from data import AphaPenDataset
import evaluate
from sklearn.model_selection import train_test_split
import torchvision.transforms as transforms
# from utils import compute_metrics
tqdm.pandas()
# Define and parse arguments.
@dataclass
class ScriptArguments:
"""
The name of the OCR model we wish to fine with Seq2SeqTrainer
"""
model_name: Optional[str] = field(default="microsoft/trocr-base-handwritten", metadata={"help": "the model name"})
dataset_name: Optional[str] = field(
default="Anthropic/hh-rlhf", metadata={"help": "the dataset name"}
)
log_with: Optional[str] = field(default="none", metadata={"help": "use 'wandb' to log with wandb"})
learning_rate: Optional[float] = field(default=1.41e-5, metadata={"help": "the learning rate"})
batch_size: Optional[int] = field(default=8, metadata={"help": "the batch size"})
seq_length: Optional[int] = field(default=512, metadata={"help": "Input sequence length"})
gradient_accumulation_steps: Optional[int] = field(
default=16, metadata={"help": "the number of gradient accumulation steps"}
)
load_in_8bit: Optional[bool] = field(default=False, metadata={"help": "load the model in 8 bits precision"})
load_in_4bit: Optional[bool] = field(default=False, metadata={"help": "load the model in 4 bits precision"})
use_peft: Optional[bool] = field(default=False, metadata={"help": "Wether to use PEFT or not to train adapters"})
trust_remote_code: Optional[bool] = field(default=False, metadata={"help": "Enable `trust_remote_code`"})
output_dir: Optional[str] = field(default="output", metadata={"help": "the output directory"})
peft_lora_r: Optional[int] = field(default=64, metadata={"help": "the r parameter of the LoRA adapters"})
peft_lora_alpha: Optional[int] = field(default=16, metadata={"help": "the alpha parameter of the LoRA adapters"})
logging_steps: Optional[int] = field(default=1, metadata={"help": "the number of logging steps"})
use_auth_token: Optional[bool] = field(default=True, metadata={"help": "Use HF auth token to access the model"})
num_train_epochs: Optional[int] = field(default=3, metadata={"help": "the number of training epochs"})
max_steps: Optional[int] = field(default=-1, metadata={"help": "the number of training steps"})
max_length: Optional[int] = field(default=10, metadata={"help": "the maximum length"})
no_repeat_ngram_size: Optional[int] = field(default=3, metadata={"help": "the number of repeat"})
length_penalty: Optional[float] = field(default=2.0, metadata={"help": "the length of penalty"})
num_beams: Optional[int] = field(default=3, metadata={"help": "the number of beam search"})
early_stopping: Optional[bool] = field(default=True, metadata={"help": "Early stopping"})
save_steps: Optional[int] = field(
default=1000, metadata={"help": "Number of updates steps before two checkpoint saves"}
)
save_total_limit: Optional[int] = field(default=10, metadata={"help": "Limits total number of checkpoints."})
push_to_hub: Optional[bool] = field(default=False, metadata={"help": "Push the model to HF Hub"})
gradient_checkpointing: Optional[bool] = field(
default=False, metadata={"help": "Whether to use gradient checkpointing or no"}
)
gradient_checkpointing_kwargs: Optional[dict] = field(
default=None,
metadata={
"help": "key word arguments to be passed along `torch.utils.checkpoint.checkpoint` method - e.g. `use_reentrant=False`"
},
)
hub_model_id: Optional[str] = field(default=None, metadata={"help": "The name of the model on HF Hub"})
parser = HfArgumentParser(ScriptArguments)
script_args = parser.parse_args_into_dataclasses()[0]
# # Step 1: Load the dataset
df_path = "/mnt/data1/Datasets/AlphaPen/" + "training_data.csv"
df = pd.read_csv(df_path)
df.dropna(inplace=True)
train_df, test_df = train_test_split(df, test_size=0.15, random_state=0)
# we reset the indices to start from zero
train_df.reset_index(drop=True, inplace=True)
test_df.reset_index(drop=True, inplace=True)
root_dir = "/mnt/data1/Datasets/OCR/Alphapen/clean_data/final_cropped_rotated_"
processor = TrOCRProcessor.from_pretrained(script_args.model_name)
# Transformation for training including augmentations
transform = transforms.Compose([
transforms.PILToTensor(),
transforms.RandomRotation(degrees=(0, 180))
])
train_dataset = AphaPenDataset(root_dir=root_dir, df=train_df, processor=processor, transform=transform)
eval_dataset = AphaPenDataset(root_dir=root_dir, df=test_df, processor=processor)
# Step 2: Load the model
if script_args.load_in_8bit and script_args.load_in_4bit:
raise ValueError("You can't load the model in 8 bits and 4 bits at the same time")
elif script_args.load_in_8bit or script_args.load_in_4bit:
quantization_config = BitsAndBytesConfig(
load_in_8bit=script_args.load_in_8bit, load_in_4bit=script_args.load_in_4bit
)
# Copy the model to each device
device_map = (
{"": f"xpu:{Accelerator().local_process_index}"}
if is_xpu_available()
else {"": Accelerator().local_process_index}
)
torch_dtype = torch.bfloat16
else:
device_map = None
quantization_config = None
torch_dtype = None
model = VisionEncoderDecoderModel.from_pretrained(
script_args.model_name,
quantization_config=quantization_config,
device_map=device_map,
trust_remote_code=script_args.trust_remote_code,
torch_dtype=torch_dtype,
token=script_args.use_auth_token,
)
# set special tokens used for creating the decoder_input_ids from the labels
model.config.decoder_start_token_id = processor.tokenizer.cls_token_id
model.config.pad_token_id = processor.tokenizer.pad_token_id
# make sure vocab size is set correctly
model.config.vocab_size = model.config.decoder.vocab_size
# set beam search parameters
model.config.eos_token_id = processor.tokenizer.sep_token_id
model.config.max_length = script_args.max_length
model.config.early_stopping = script_args.early_stopping
model.config.no_repeat_ngram_size = script_args.no_repeat_ngram_size
model.config.length_penalty = script_args.length_penalty
model.config.num_beams = script_args.num_beams
# # Step 3: Define the training arguments
training_args = Seq2SeqTrainingArguments(
predict_with_generate=True,
evaluation_strategy="steps",
# per_device_train_batch_size=script_args.batch_size,
# per_device_eval_batch_size=script_args.batch_size,
fp16=True,
output_dir=script_args.output_dir,
logging_steps=script_args.logging_steps,
save_steps=script_args.save_steps,
eval_steps=100,
save_total_limit=script_args.save_total_limit,
load_best_model_at_end = True,
report_to=script_args.log_with,
num_train_epochs=script_args.num_train_epochs,
push_to_hub=script_args.push_to_hub,
hub_model_id=script_args.hub_model_id,
gradient_checkpointing=script_args.gradient_checkpointing,
auto_find_batch_size=True,
metric_for_best_model="eval/cer"
# TODO: uncomment that on the next release
# gradient_checkpointing_kwargs=script_args.gradient_checkpointing_kwargs,
)
# Step 4: Define a metric
def compute_metrics(pred):
# accuracy_metric = evaluate.load("precision")
cer_metric = evaluate.load("cer")
labels_ids = pred.label_ids
pred_ids = pred.predictions
pred_str = processor.batch_decode(pred_ids, skip_special_tokens=True)
labels_ids[labels_ids == -100] = processor.tokenizer.pad_token_id
label_str = processor.batch_decode(labels_ids, skip_special_tokens=True)
cer = cer_metric.compute(predictions=pred_str, references=label_str)
# accuracy = accuracy_metric.compute(predictions=pred_ids.tolist(), references=labels_ids.tolist())
return {"cer": cer}
early_stop = EarlyStoppingCallback(10, .001)
# Step 5: Define the LoraConfig
if script_args.use_peft:
peft_config = LoraConfig(
r=script_args.peft_lora_r,
lora_alpha=script_args.peft_lora_alpha,
bias="none",
task_type="CAUSAL_LM",
target_modules="all-linear"
)
else:
peft_config = None
# # Step 6: Define the Trainer
trainer = SFTTrainer(
model=model,
tokenizer=processor.feature_extractor,
args=training_args,
compute_metrics=compute_metrics,
train_dataset=train_dataset,
eval_dataset=eval_dataset,
data_collator=default_data_collator,
peft_config=peft_config,
callbacks=[EarlyStoppingCallback(early_stopping_patience=10)]
)
trainer.train()
# # Step 6: Save the model
# trainer.save_model(script_args.output_dir)
|