--- license: apache-2.0 base_model: distilbert-base-uncased tags: - generated_from_trainer metrics: - accuracy - f1 - precision - recall model-index: - name: distilbert-base-uncased-english-cefr-lexical-evaluation-bs-v3 results: [] --- # distilbert-base-uncased-english-cefr-lexical-evaluation-bs-v3 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.8231 - Accuracy: 0.6266 - F1: 0.6262 - Precision: 0.6333 - Recall: 0.6266 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:| | 1.2788 | 1.0 | 346 | 1.3442 | 0.4996 | 0.4895 | 0.5071 | 0.4996 | | 1.0093 | 2.0 | 692 | 1.2521 | 0.5670 | 0.5689 | 0.5959 | 0.5670 | | 0.5086 | 3.0 | 1038 | 1.4732 | 0.5902 | 0.5918 | 0.5978 | 0.5902 | | 0.2153 | 4.0 | 1384 | 1.9881 | 0.6010 | 0.6016 | 0.6120 | 0.6010 | | 0.0496 | 5.0 | 1730 | 2.0705 | 0.6003 | 0.6015 | 0.6047 | 0.6003 | ### Framework versions - Transformers 4.31.0 - Pytorch 2.0.1+cu118 - Datasets 2.13.1 - Tokenizers 0.13.3