File size: 2,333 Bytes
63d1c3b
16c2a66
63d1c3b
 
 
 
 
 
16c2a66
 
 
 
 
 
63d1c3b
 
 
 
 
16c2a66
63d1c3b
 
 
1a524c2
 
 
63d1c3b
 
ea22293
63d1c3b
 
 
16c2a66
63d1c3b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
40f7699
 
63d1c3b
 
 
 
 
 
16c2a66
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
---
license: cc-by-nc-4.0
base_model: xlm-roberta-base
tags:
- generated_from_trainer
model-index:
- name: roberta-base-azerbaijani
  results: []
datasets:
- hajili/azerbaijani-various-corpus
language:
- az
metrics:
- perplexity
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

This model is a continued pre-trained version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on a various cleaned community corpus.
It achieves the following results on the evaluation set:
- Loss: 1.1697

We thank Microsoft Accelerating Foundation Models Research Program for supporting our research.
Authors: Mammad Hajili, Duygu Ataman

## Model description

The model was trained on masked language model task on a single V100 GPU for 68 hours. For downstream tasks, it requires to be fine-tuned based on objective of the task.

## Training and evaluation data

The training data is clean mix of various Azerbaijani corpus shared by the community.

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3.0
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch  | Step    | Validation Loss |
|:-------------:|:------:|:-------:|:---------------:|
| 1.6126        | 0.2500 | 100910  | 1.4818          |
| 1.4961        | 0.5000 | 201820  | 1.4163          |
| 1.4324        | 0.7500 | 302730  | 1.3371          |
| 1.387         | 1.0000 | 403640  | 1.3070          |
| 1.3488        | 1.2500 | 504550  | 1.2649          |
| 1.323         | 1.5000 | 605460  | 1.2581          |
| 1.3006        | 1.7500 | 706370  | 1.2066          |
| 1.2866        | 2.0000 | 807280  | 1.2095          |
| 1.2646        | 2.2500 | 908190  | 1.2019          |
| 1.2492        | 2.5000 | 1009100 | 1.1779          |
| 1.2425        | 2.7500 | 1110010 | 1.1742          |

- Validation loss at epoch 3: 1.1697
- Perplexity at epoch 3: 3.22

### Framework versions

- Transformers 4.40.1
- Pytorch 2.3.0+cu121
- Datasets 2.19.0
- Tokenizers 0.19.1