LunarLander / config.json
han-na's picture
upload a better model
e559f7e verified
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7a4703282f80>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7a4703283010>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7a47032830a0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7a4703283130>", "_build": "<function ActorCriticPolicy._build at 0x7a47032831c0>", "forward": "<function ActorCriticPolicy.forward at 0x7a4703283250>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7a47032832e0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7a4703283370>", "_predict": "<function ActorCriticPolicy._predict at 0x7a4703283400>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7a4703283490>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7a4703283520>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7a47032835b0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7a470321e240>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1507328, "_total_timesteps": 1500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1726732717742680397, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAMDI472Btl0+MZ+VPkYmB79WsDw9+aiDPgAAAAAAAAAAM1HlPBQulLpe9+Q9y6+oOP5SGDvzlpo3AACAPwAAgD9m8BM9j+54vJdqnT6nGVE9dr0qvOP5/LsAAIA/AACAP83L37yqcrE/HZYLvj4ymL6nIJM5DhHzvAAAAAAAAAAAMwPEOwOPKrx7cbW93wXEO9lMkz2tW+m9AACAPwAAgD/NdO29NYsbPuvqdD7tfue+tOQmvSPsOT4AAAAAAAAAAM1DNb5hf7c+jXoaPqBGJr8aOFq+ytxjPgAAAAAAAAAAoIKePsN3Pz/uKKW9upscv9V3Bz/eQVa+AAAAAAAAAABm7CI8JB2yP9Ic/j5nYuO+ZP0XvAYyjr0AAAAAAAAAAE3itT2RRO4999C3vtQVtb5/Gja+zGIyvgAAAAAAAAAAABSyPEKmsj/SM1Y+qhJAvi5EdjzWlmg9AAAAAAAAAAAA6928riyKvFKe4r3/5RG9AMYHPcKugT4AAIA/AACAP402rj02gls/ByoFPuLuQr95rDc+nTtPPQAAAAAAAAAAM9FWvHv0hLrNDeO2ifXSsUDdBztOjQU2AACAPwAAgD/m+gi9z3wsvPlDBDzXQWo9YWAvPIzVMrwAAIA/AACAPyb5QD6Ah6M+AveXvnRKEr9DBYI+87uXvgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.004885333333333408, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV4gsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQG64OF6AvteMAWyUS6OMAXSUR0Cqf1rmhdt3dX2UKGgGR0Bx59AzHjp+aAdNcwFoCEdAqn9mXHBDX3V9lChoBkdAc5oSoOx0MmgHS79oCEdAqn+imEXcg3V9lChoBkdAcaFjLSuyNWgHS8doCEdAqn/lG3F1jnV9lChoBkdAcwPQhOgxrWgHS7poCEdAqn/qTt9hJHV9lChoBkdAcvX+JP69CmgHS8JoCEdAqn/1kz41xnV9lChoBkdAb05y4FzMimgHS6poCEdAqoBVxbSql3V9lChoBkdAciRo3Jgb62gHS7RoCEdAqoBhAOavzXV9lChoBkdAcztQj2SMcmgHS7JoCEdAqoClAgPmP3V9lChoBkdActJxh2GIsWgHS71oCEdAqpB2u9vjwXV9lChoBkdAc2KtfXwsoWgHS81oCEdAqpCRFCswL3V9lChoBkdAcbM6HCXQdGgHS7VoCEdAqpChASnLq3V9lChoBkdAcWPxp+MIeGgHS7toCEdAqpCei5/b03V9lChoBkdAcu8AOrhismgHS89oCEdAqpC8pd8iOnV9lChoBkdAcrfQcPvrnmgHS69oCEdAqpDQcR15jnV9lChoBkdAcmy4aP0ZnGgHS7xoCEdAqpD8figkC3V9lChoBkdAc9KD1GsmwGgHS6loCEdAqpEQ1LrX2HV9lChoBkdAco5sWfseGWgHS7poCEdAqpGFhTfixXV9lChoBkdAcPzxtpEhJWgHS5JoCEdAqpGQWznienV9lChoBkdAcq2Jz1bqyGgHS7xoCEdAqpGdRk3CK3V9lChoBkdAch5beuV5bGgHS8VoCEdAqpGqi22G7HV9lChoBkdAczzp0wJw9GgHS/toCEdAqpGx6v7m+3V9lChoBkdAcfQcafjCHmgHS5FoCEdAqpIGjASFoXV9lChoBkdAcYT7gbZOBWgHS49oCEdAqpIOO6unuXV9lChoBkdAcrky0a6z3WgHS8RoCEdAqpIcpb2US3V9lChoBkdAcpH90zTF2mgHS75oCEdAqpJqgXdj5XV9lChoBkdAcxQDAaef7WgHS8hoCEdAqpJtytFKCnV9lChoBkdAchkrj5sTFmgHS69oCEdAqpKJ4lhPTHV9lChoBkdAQwYHgP3BYWgHS2FoCEdAqpKUF+uvEHV9lChoBkdAc3dtLteD4GgHS8poCEdAqpKxYNiH7HV9lChoBkdAclWBYV6/qWgHS8VoCEdAqpLUoYvWYnV9lChoBkdAc1y4mTkhimgHS7RoCEdAqpLYQvpQlHV9lChoBkdAdCWH9m6GxmgHS7poCEdAqpL7TBqKxnV9lChoBkdAcnuQ/5ckdGgHS75oCEdAqpOPS+g133V9lChoBkdAcac0nPVurWgHS7loCEdAqpOPIlt0m3V9lChoBkdAcyvBbOeJ52gHS81oCEdAqpOi9ytFKHV9lChoBkdAcaPQAdXDFmgHS5doCEdAqpOtGI9C/3V9lChoBkdAcnQFJQLuyGgHS8poCEdAqpPEDEFW4nV9lChoBkdAcidc1O0sv2gHS7poCEdAqpP4bbUPQXV9lChoBkdAcECJIUahpWgHS5hoCEdAqpQTySV4YHV9lChoBkdAc9jXZoPCmGgHS8doCEdAqpQTa7EpAnV9lChoBkdAcR1jghr302gHS7toCEdAqpRXbwjMV3V9lChoBkdAcL8btZ3cHmgHS75oCEdAqpRc9bHIZXV9lChoBkdAcdQXRw6ySmgHS7RoCEdAqpRrS3LFGXV9lChoBkdAcSyPLPldT2gHS5doCEdAqpSMAaNuL3V9lChoBkdAchVWY4Qz12gHS6doCEdAqpSSMir1d3V9lChoBkdAcy+kAxSHd2gHS9toCEdAqpT1Dtw71nV9lChoBkdAaJGeNkvsaGgHTegDaAhHQKqVFmGucMF1fZQoaAZHQHQGYhllK9RoB0vaaAhHQKqVGUeuFHt1fZQoaAZHQHFIIaYNRWNoB0uraAhHQKqVU3qAz551fZQoaAZHQHAfob4rSVpoB0unaAhHQKqVZJWeYlZ1fZQoaAZHQEfU7CiyprFoB0uGaAhHQKqVdha1Tit1fZQoaAZHQHOVkCRwIdFoB0u8aAhHQKqVkPBBRht1fZQoaAZHQHMcWzfJmuloB0vbaAhHQKqVzLt/nW91fZQoaAZHQHO+K4H5aeRoB0vTaAhHQKqV6kN4JNV1fZQoaAZHQHL2zw6QvHtoB0u3aAhHQKqV82w3YL91fZQoaAZHQHFAmCmMwURoB0uvaAhHQKqWHvcafjF1fZQoaAZHQHK++pjtoi9oB0vYaAhHQKqWKrJ8v251fZQoaAZHQHDhR51Ng0FoB0uuaAhHQKqWKoE0SAZ1fZQoaAZHQHDM3pOerdZoB0vJaAhHQKqWWUSqU/x1fZQoaAZHQHNKSiyprDZoB0u0aAhHQKqWXJjDsMR1fZQoaAZHQHIzRcqvvBtoB0vFaAhHQKqWfjNIK+l1fZQoaAZHQFMBjW07bL5oB0uTaAhHQKqWuNhE0BR1fZQoaAZHQHDeen2qT8poB0u7aAhHQKqWv7j1f3N1fZQoaAZHQHD32UGFBY5oB0uwaAhHQKqWwg2606Z1fZQoaAZHQHE+NvS+g15oB0u5aAhHQKqW2rkKeCl1fZQoaAZHQHCbcjqv/zdoB0unaAhHQKqXBnoPkJd1fZQoaAZHQHOO0eMhouhoB0u+aAhHQKqXKz9CNS91fZQoaAZHQHNnUlE7W/doB0vJaAhHQKqXbeTmnwZ1fZQoaAZHQHGBkX531SRoB0uyaAhHQKqXcEHMUyp1fZQoaAZHQHCG9a2WpqBoB0utaAhHQKqXgQgcLjR1fZQoaAZHQHI/1D8cdYJoB0ugaAhHQKqXlsyi22J1fZQoaAZHQEd6dtl7MPloB0teaAhHQKqXnJnQID51fZQoaAZHQHBRZ5u63ApoB0ueaAhHQKqXnIkJKJ51fZQoaAZHQHDh78Nx2jhoB0u2aAhHQKqXn93r2QJ1fZQoaAZHQHP+2kep4r1oB0vCaAhHQKqX62bXpW51fZQoaAZHQHG+h5kbxVhoB0u3aAhHQKqYA4Ds+mp1fZQoaAZHQHGFlOTJQtVoB0usaAhHQKqYDXiBGx51fZQoaAZHQHE9cY64lQdoB0vAaAhHQKqYFslb/wR1fZQoaAZHQHC/KFyq+8JoB0uWaAhHQKqYFjiGWUt1fZQoaAZHQG68eLNwBHVoB0umaAhHQKqYVb2USqV1fZQoaAZHQHEANgjQiRpoB0vAaAhHQKqYgiUPhAJ1fZQoaAZHQHIZa7/XGwRoB0u+aAhHQKqYx4SpR411fZQoaAZHQHPKKm0mdAhoB0u4aAhHQKqY4fYjB2x1fZQoaAZHQD6Y8La24NJoB0tYaAhHQKqY7Id2gWd1fZQoaAZHQHPVZpWV/tpoB0umaAhHQKqY++pwS8J1fZQoaAZHQHRezArQPZtoB0u5aAhHQKqZJjbSJCV1fZQoaAZHQHOcDKYAsCloB0u5aAhHQKqZOP91loV1fZQoaAZHQHMtM9Oh0yRoB0u0aAhHQKqZQskIHC51fZQoaAZHQHOLduxbB45oB0u8aAhHQKqZWGATZg51fZQoaAZHQHDppg1FYuFoB0vAaAhHQKqZZDuSfUZ1fZQoaAZHQHMlXLidat9oB0vIaAhHQKqZc3rD6311fZQoaAZHQHFI02pAD7toB0uVaAhHQKqZeH9m6Gx1fZQoaAZHQHG7/u1F6RhoB0u8aAhHQKqZpPhQ3xZ1fZQoaAZHQHJF0Oy3TeBoB0uyaAhHQKqZrYXfqHJ1fZQoaAZHQHEwaNp/PPdoB0u3aAhHQKqZr5a/yoZ1fZQoaAZHQHFmj4UN8VpoB0uraAhHQKqZ5iEQGwB1fZQoaAZHQHGlpQxesxRoB0uPaAhHQKqaIsK9f1J1fZQoaAZHQHHwi/KyOaRoB0u9aAhHQKqaNwx33Yd1fZQoaAZHQHLNJ0fYBeZoB0ubaAhHQKqaStKZlWh1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 1232, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.995, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 8, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Thu Jun 27 21:05:47 UTC 2024", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.4.0+cu121", "GPU Enabled": "False", "Numpy": "1.26.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}