han-na commited on
Commit
3116cce
·
verified ·
1 Parent(s): 56b755b

PPO lunar lander

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 218.00 +/- 86.87
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7c756d3e5990>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7c756d3e5a20>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7c756d3e5ab0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7c756d3e5b40>", "_build": "<function ActorCriticPolicy._build at 0x7c756d3e5bd0>", "forward": "<function ActorCriticPolicy.forward at 0x7c756d3e5c60>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7c756d3e5cf0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7c756d3e5d80>", "_predict": "<function ActorCriticPolicy._predict at 0x7c756d3e5e10>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7c756d3e5ea0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7c756d3e5f30>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7c756d3e5fc0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7c756d379440>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1726580689326610555, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAICCVj1Io566BGdHuMt2P7PVeZ86OOJlNwAAgD8AAIA/ZgqEvPboWbhCFAE64U88NS6BfDejJhm5AACAPwAAgD9N7369+8EOP6ohsDx/eJK+6PWRvGo44j0AAAAAAAAAAGYqrbyp5nO8D4kEPQMyej13BrU9g097vAAAgD8AAIA/ADQyvMjpqj9Ktp29j6llvo+3b7s6NgE8AAAAAAAAAABmbvG8XNcousiVijktyYs0BBsAO7bPpLgAAIA/AACAP5oOs70pRGm6Mpq3urNMXLYWdnO7euX2OQAAgD8AAIA/MyLxvI+uK7pI5o45mtm8L3RPyrqipKa4AACAPwAAgD+av6O84ciLujbm/7rGNZo1ocJFO7o3DLUAAIA/AACAP5r96rsU9om6bI2au+RR+bbijPE6/6uzOgAAgD8AAIA/mnGMvCmwJLojTng7LZGIOOTOebrKu/25AACAPwAAgD8zRrW89uQJurtEkDl3FlgztSGVureNqrgAAIA/AACAP4BTQb3DNx4/HdrnvV4aQb7k2VK9BR3RugAAAAAAAAAAmiWlPaRAQLkyKy04FaPmMuMdT7sWoE23AACAPwAAgD+a8SE7SB2Oupi3uLqerMW15xQkOypX1jkAAIA/AACAPwB6grxI34O6Xv+aOqYKb7YFM0Q7IE5jtQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGG+sdcSoOyMAWyUTegDjAF0lEdAm9SjlxOtXHV9lChoBkdAYo2VeruIAWgHTegDaAhHQJvVI9s7+1l1fZQoaAZHQGYKyy2QXANoB03oA2gIR0Cb6uR15jYqdX2UKGgGR0BihlHQQcxTaAdN6ANoCEdAm/YJgogFHXV9lChoBkdAZUGAVfu1GGgHTegDaAhHQJv5/gUDdQB1fZQoaAZHQGRlMMiKR+1oB03oA2gIR0CcARGJvYOEdX2UKGgGR0BjwUBIWgvlaAdN6ANoCEdAnAVTWoWHlHV9lChoBkdAYKpBN21Ul2gHTegDaAhHQJwPduk1uR91fZQoaAZHQFuNPgvUSZloB03oA2gIR0CcF7+6y0KJdX2UKGgGR0BhIPomois5aAdN6ANoCEdAnBh6qbSZ0HV9lChoBkdAV1QePq9oOGgHTegDaAhHQJwY+jxkNF11fZQoaAZHQF8gjvd/J/5oB03oA2gIR0CcGbNWEK3NdX2UKGgGR0BcfJJGvwEyaAdN6ANoCEdAnCG+ZG8VYnV9lChoBkdAX0b0Fr2xp2gHTegDaAhHQJwsNp/PPcB1fZQoaAZHQF+IqTbFjutoB03oA2gIR0CcLEoSL61tdX2UKGgGR0BjUusNlRP5aAdN6ANoCEdAnDHh2jfvW3V9lChoBkdAYU+vGp++d2gHTegDaAhHQJwyPOhTOxB1fZQoaAZHQGYIHAAQxvhoB03oA2gIR0CcMr9deIEbdX2UKGgGR0BkDW2G7BfsaAdN6ANoCEdAnDTVB+nZTXV9lChoBkdAMaZ3s5XEImgHTQwBaAhHQJxRNo371qZ1fZQoaAZHQGHm1i4J/odoB03oA2gIR0CcU8yFwkxAdX2UKGgGR0BcMmG/N7jUaAdN6ANoCEdAnFdrk0aZQnV9lChoBkdAVwiSPluFYmgHTegDaAhHQJxdo9ZA6dV1fZQoaAZHQGUfsi0OVgRoB03oA2gIR0CcYaNDc/MXdX2UKGgGR0Bk/pgy/KyOaAdN6ANoCEdAnGtmHLzPKXV9lChoBkdAXnbt5UtI1GgHTegDaAhHQJxyRm7J4jd1fZQoaAZHQGUqPoFFDv5oB03oA2gIR0Ccct1ZDArQdX2UKGgGR0Bk5WQMhHLBaAdN6ANoCEdAnHM58jRlYnV9lChoBkdAYXC2wV0tAmgHTegDaAhHQJxzyDM/yG11fZQoaAZHQF0yOQhfShJoB03oA2gIR0Cce/1q33HrdX2UKGgGR0BfR3DWK/EgaAdN6ANoCEdAnIjBq0tyxXV9lChoBkdAXecJng5zYGgHTegDaAhHQJyO4a5wwTN1fZQoaAZHQF5TjI7vG6xoB03oA2gIR0Ccjz/82rGSdX2UKGgGR0BfyPTgEU0vaAdN6ANoCEdAnI/EvCdjG3V9lChoBkdAYu8m0E5hjWgHTegDaAhHQJyR1qcmShd1fZQoaAZHQGDv5aV2Rq5oB03oA2gIR0CcrAUzsQd0dX2UKGgGR0Bio7OxB3RpaAdN6ANoCEdAnK9r+YMOPXV9lChoBkdAXQyY+jdpI2gHTegDaAhHQJy0Kq6vq1R1fZQoaAZHQGMes9SuQp5oB03oA2gIR0Ccuwa1Cw8odX2UKGgGR0BbsxjawljWaAdN6ANoCEdAnL8HenAIp3V9lChoBkdAZEl8iwB5o2gHTegDaAhHQJzJBK/VRUF1fZQoaAZHQGCeznRsuWdoB03oA2gIR0Ccz9pTdcjadX2UKGgGR0Bg6B2r4nF6aAdN6ANoCEdAnNBze9Ba93V9lChoBkdAYehGy5Zr6GgHTegDaAhHQJzQyg2606Z1fZQoaAZHQF54dpZfUnZoB03oA2gIR0Cc0VK/VRUFdX2UKGgGR0BdqnV5KODKaAdN6ANoCEdAnNmgWFev6nV9lChoBkdAZeuGJN0vG2gHTegDaAhHQJzpvn/1g6V1fZQoaAZHQGHMc3VCojxoB03oA2gIR0Cc8ONvOyE+dX2UKGgGR0Bhi90NjLB9aAdN6ANoCEdAnPFNXtBv73V9lChoBkdAYniPjn3cpWgHTegDaAhHQJzx7Qqqfe11fZQoaAZHQGFJyLAHmihoB03oA2gIR0Cc9FV58jRldX2UKGgGR0BhNpU1hsqKaAdN6ANoCEdAnQ9xm5DqnnV9lChoBkdARHVr9ETg22gHTRwBaAhHQJ0Ql6iTMaF1fZQoaAZHQFzcYZVGTcJoB03oA2gIR0CdEdbGFSKndX2UKGgGR0BgGaaG5+YuaAdN6ANoCEdAnRWFjurp7nV9lChoBkdAYEFXJYDDCWgHTegDaAhHQJ0doTAWSEF1fZQoaAZHQF3EuIAOrhloB03oA2gIR0CdIj/336AOdX2UKGgGR0BctZdKNAC5aAdN6ANoCEdAnSuVrRBu43V9lChoBkdAYABxnWattGgHTegDaAhHQJ0xiCsfaHt1fZQoaAZHQFWLq3mV7hNoB03oA2gIR0CdMgdmxt52dX2UKGgGR0BgWvOnl4keaAdN6ANoCEdAnTJjKxLTQXV9lChoBkdAYC/s2vStvGgHTegDaAhHQJ0y7LDAJsx1fZQoaAZHQGJ24jjaPCFoB03oA2gIR0CdOlOCXhOydX2UKGgGR0Bf2AqEvkBCaAdN6ANoCEdAnUy7MC9ytHV9lChoBkdAZOsqCHymRGgHTegDaAhHQJ1NPs2NvO11fZQoaAZHQF9FRJmNBGBoB03oA2gIR0CdThNKAavSdX2UKGgGR0BgCWkk8ifQaAdN6ANoCEdAnVFoD9wWFnV9lChoBkdAYKWCcwxnF2gHTegDaAhHQJ1tLkhib2F1fZQoaAZHQF0oht+CsfdoB03oA2gIR0CdboVsUIszdX2UKGgGR0Bh+rV4HHFQaAdN6ANoCEdAnW/cTviLl3V9lChoBkdAXj/IxQBPsWgHTegDaAhHQJ1zP2+PBBR1fZQoaAZHQGXXhEroW59oB03oA2gIR0CdeQRXfZVXdX2UKGgGR0Bhp2PRzBAOaAdN6ANoCEdAnXzOFtbcGnV9lChoBkdAX+gDp1RtQGgHTegDaAhHQJ2Jq+10DEF1fZQoaAZHQGJ5VB+nZTRoB03oA2gIR0Cdj+0F8ohIdX2UKGgGR0Bk0EGZ/kNnaAdN6ANoCEdAnZByDM/yG3V9lChoBkdAXiNxzaK1omgHTegDaAhHQJ2QympEQXh1fZQoaAZHQGF3tNSIgvFoB03oA2gIR0CdkU6GgzxgdX2UKGgGR0BfVgFTvRZ2aAdN6ANoCEdAnZiWfK6nSHV9lChoBkdAXzcQarFOwmgHTegDaAhHQJ2qpRQ79yd1fZQoaAZHQGPmEbHZK4BoB03oA2gIR0Cdqwskpqh2dX2UKGgGR0Bk3QaWHDaXaAdN6ANoCEdAnauXYg7o0XV9lChoBkdAZHYUSqU/wGgHTegDaAhHQJ2t5US7GvR1fZQoaAZHQGDmtedCmdloB03oA2gIR0CdzCrHEMspdX2UKGgGR0BkIQXsPatcaAdN6ANoCEdAnc1eokzGgnV9lChoBkdAXtR+KCQLeGgHTegDaAhHQJ3OqVyFPBV1fZQoaAZHQGL9huwX669oB03oA2gIR0Cd0ewe/5+IdX2UKGgGR0BI7z+m3vx6aAdNVwFoCEdAndajSPU8WHV9lChoBkdAYII5J9RaYGgHTegDaAhHQJ3Xk4S6DoR1fZQoaAZHQGCgdlNDc/NoB03oA2gIR0Cd2x4wAU+LdX2UKGgGR0Bhdu/JvHcUaAdN6ANoCEdAnePyRr8BMnV9lChoBkdAYhmzfrKNhmgHTegDaAhHQJ3raluWKMx1fZQoaAZHQGN62/BWPtFoB03oA2gIR0Cd7DEP1+RYdX2UKGgGR0BgPGMZP2wnaAdN6ANoCEdAneyzgIhQnHV9lChoBkdAYvsDyOJcgWgHTegDaAhHQJ3taLS/j811fZQoaAZHQGCdV4HHFP1oB03oA2gIR0Cd9YaDPGADdX2UKGgGR0BwjoQ5FPSEaAdNPANoCEdAnf03MEA5rHV9lChoBkdAY7jltj0+T2gHTegDaAhHQJ4GOQMhHLB1fZQoaAZHQGKTrCN0eU9oB03oA2gIR0CeBtSDAaegdX2UKGgGR0ByAF2hZha1aAdNBQJoCEdAnhB45PuXu3VlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Thu Jun 27 21:05:47 UTC 2024", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.4.0+cu121", "GPU Enabled": "True", "Numpy": "1.26.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
ppo-LunarLander-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8c30406457bc00490495d90b1146868d6982e1bb19cbd2f23551a4cfea4ac953
3
+ size 148088
ppo-LunarLander-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 2.0.0a5
ppo-LunarLander-v2/data ADDED
@@ -0,0 +1,99 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7c756d3e5990>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7c756d3e5a20>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7c756d3e5ab0>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7c756d3e5b40>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7c756d3e5bd0>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7c756d3e5c60>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7c756d3e5cf0>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7c756d3e5d80>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7c756d3e5e10>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7c756d3e5ea0>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7c756d3e5f30>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7c756d3e5fc0>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x7c756d379440>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {},
24
+ "num_timesteps": 1015808,
25
+ "_total_timesteps": 1000000,
26
+ "_num_timesteps_at_start": 0,
27
+ "seed": null,
28
+ "action_noise": null,
29
+ "start_time": 1726580689326610555,
30
+ "learning_rate": 0.0003,
31
+ "tensorboard_log": null,
32
+ "_last_obs": {
33
+ ":type:": "<class 'numpy.ndarray'>",
34
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAICCVj1Io566BGdHuMt2P7PVeZ86OOJlNwAAgD8AAIA/ZgqEvPboWbhCFAE64U88NS6BfDejJhm5AACAPwAAgD9N7369+8EOP6ohsDx/eJK+6PWRvGo44j0AAAAAAAAAAGYqrbyp5nO8D4kEPQMyej13BrU9g097vAAAgD8AAIA/ADQyvMjpqj9Ktp29j6llvo+3b7s6NgE8AAAAAAAAAABmbvG8XNcousiVijktyYs0BBsAO7bPpLgAAIA/AACAP5oOs70pRGm6Mpq3urNMXLYWdnO7euX2OQAAgD8AAIA/MyLxvI+uK7pI5o45mtm8L3RPyrqipKa4AACAPwAAgD+av6O84ciLujbm/7rGNZo1ocJFO7o3DLUAAIA/AACAP5r96rsU9om6bI2au+RR+bbijPE6/6uzOgAAgD8AAIA/mnGMvCmwJLojTng7LZGIOOTOebrKu/25AACAPwAAgD8zRrW89uQJurtEkDl3FlgztSGVureNqrgAAIA/AACAP4BTQb3DNx4/HdrnvV4aQb7k2VK9BR3RugAAAAAAAAAAmiWlPaRAQLkyKy04FaPmMuMdT7sWoE23AACAPwAAgD+a8SE7SB2Oupi3uLqerMW15xQkOypX1jkAAIA/AACAPwB6grxI34O6Xv+aOqYKb7YFM0Q7IE5jtQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
35
+ },
36
+ "_last_episode_starts": {
37
+ ":type:": "<class 'numpy.ndarray'>",
38
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
39
+ },
40
+ "_last_original_obs": null,
41
+ "_episode_num": 0,
42
+ "use_sde": false,
43
+ "sde_sample_freq": -1,
44
+ "_current_progress_remaining": -0.015808000000000044,
45
+ "_stats_window_size": 100,
46
+ "ep_info_buffer": {
47
+ ":type:": "<class 'collections.deque'>",
48
+ ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGG+sdcSoOyMAWyUTegDjAF0lEdAm9SjlxOtXHV9lChoBkdAYo2VeruIAWgHTegDaAhHQJvVI9s7+1l1fZQoaAZHQGYKyy2QXANoB03oA2gIR0Cb6uR15jYqdX2UKGgGR0BihlHQQcxTaAdN6ANoCEdAm/YJgogFHXV9lChoBkdAZUGAVfu1GGgHTegDaAhHQJv5/gUDdQB1fZQoaAZHQGRlMMiKR+1oB03oA2gIR0CcARGJvYOEdX2UKGgGR0BjwUBIWgvlaAdN6ANoCEdAnAVTWoWHlHV9lChoBkdAYKpBN21Ul2gHTegDaAhHQJwPduk1uR91fZQoaAZHQFuNPgvUSZloB03oA2gIR0CcF7+6y0KJdX2UKGgGR0BhIPomois5aAdN6ANoCEdAnBh6qbSZ0HV9lChoBkdAV1QePq9oOGgHTegDaAhHQJwY+jxkNF11fZQoaAZHQF8gjvd/J/5oB03oA2gIR0CcGbNWEK3NdX2UKGgGR0BcfJJGvwEyaAdN6ANoCEdAnCG+ZG8VYnV9lChoBkdAX0b0Fr2xp2gHTegDaAhHQJwsNp/PPcB1fZQoaAZHQF+IqTbFjutoB03oA2gIR0CcLEoSL61tdX2UKGgGR0BjUusNlRP5aAdN6ANoCEdAnDHh2jfvW3V9lChoBkdAYU+vGp++d2gHTegDaAhHQJwyPOhTOxB1fZQoaAZHQGYIHAAQxvhoB03oA2gIR0CcMr9deIEbdX2UKGgGR0BkDW2G7BfsaAdN6ANoCEdAnDTVB+nZTXV9lChoBkdAMaZ3s5XEImgHTQwBaAhHQJxRNo371qZ1fZQoaAZHQGHm1i4J/odoB03oA2gIR0CcU8yFwkxAdX2UKGgGR0BcMmG/N7jUaAdN6ANoCEdAnFdrk0aZQnV9lChoBkdAVwiSPluFYmgHTegDaAhHQJxdo9ZA6dV1fZQoaAZHQGUfsi0OVgRoB03oA2gIR0CcYaNDc/MXdX2UKGgGR0Bk/pgy/KyOaAdN6ANoCEdAnGtmHLzPKXV9lChoBkdAXnbt5UtI1GgHTegDaAhHQJxyRm7J4jd1fZQoaAZHQGUqPoFFDv5oB03oA2gIR0Ccct1ZDArQdX2UKGgGR0Bk5WQMhHLBaAdN6ANoCEdAnHM58jRlYnV9lChoBkdAYXC2wV0tAmgHTegDaAhHQJxzyDM/yG11fZQoaAZHQF0yOQhfShJoB03oA2gIR0Cce/1q33HrdX2UKGgGR0BfR3DWK/EgaAdN6ANoCEdAnIjBq0tyxXV9lChoBkdAXecJng5zYGgHTegDaAhHQJyO4a5wwTN1fZQoaAZHQF5TjI7vG6xoB03oA2gIR0Ccjz/82rGSdX2UKGgGR0BfyPTgEU0vaAdN6ANoCEdAnI/EvCdjG3V9lChoBkdAYu8m0E5hjWgHTegDaAhHQJyR1qcmShd1fZQoaAZHQGDv5aV2Rq5oB03oA2gIR0CcrAUzsQd0dX2UKGgGR0Bio7OxB3RpaAdN6ANoCEdAnK9r+YMOPXV9lChoBkdAXQyY+jdpI2gHTegDaAhHQJy0Kq6vq1R1fZQoaAZHQGMes9SuQp5oB03oA2gIR0Ccuwa1Cw8odX2UKGgGR0BbsxjawljWaAdN6ANoCEdAnL8HenAIp3V9lChoBkdAZEl8iwB5o2gHTegDaAhHQJzJBK/VRUF1fZQoaAZHQGCeznRsuWdoB03oA2gIR0Ccz9pTdcjadX2UKGgGR0Bg6B2r4nF6aAdN6ANoCEdAnNBze9Ba93V9lChoBkdAYehGy5Zr6GgHTegDaAhHQJzQyg2606Z1fZQoaAZHQF54dpZfUnZoB03oA2gIR0Cc0VK/VRUFdX2UKGgGR0BdqnV5KODKaAdN6ANoCEdAnNmgWFev6nV9lChoBkdAZeuGJN0vG2gHTegDaAhHQJzpvn/1g6V1fZQoaAZHQGHMc3VCojxoB03oA2gIR0Cc8ONvOyE+dX2UKGgGR0Bhi90NjLB9aAdN6ANoCEdAnPFNXtBv73V9lChoBkdAYniPjn3cpWgHTegDaAhHQJzx7Qqqfe11fZQoaAZHQGFJyLAHmihoB03oA2gIR0Cc9FV58jRldX2UKGgGR0BhNpU1hsqKaAdN6ANoCEdAnQ9xm5DqnnV9lChoBkdARHVr9ETg22gHTRwBaAhHQJ0Ql6iTMaF1fZQoaAZHQFzcYZVGTcJoB03oA2gIR0CdEdbGFSKndX2UKGgGR0BgGaaG5+YuaAdN6ANoCEdAnRWFjurp7nV9lChoBkdAYEFXJYDDCWgHTegDaAhHQJ0doTAWSEF1fZQoaAZHQF3EuIAOrhloB03oA2gIR0CdIj/336AOdX2UKGgGR0BctZdKNAC5aAdN6ANoCEdAnSuVrRBu43V9lChoBkdAYABxnWattGgHTegDaAhHQJ0xiCsfaHt1fZQoaAZHQFWLq3mV7hNoB03oA2gIR0CdMgdmxt52dX2UKGgGR0BgWvOnl4keaAdN6ANoCEdAnTJjKxLTQXV9lChoBkdAYC/s2vStvGgHTegDaAhHQJ0y7LDAJsx1fZQoaAZHQGJ24jjaPCFoB03oA2gIR0CdOlOCXhOydX2UKGgGR0Bf2AqEvkBCaAdN6ANoCEdAnUy7MC9ytHV9lChoBkdAZOsqCHymRGgHTegDaAhHQJ1NPs2NvO11fZQoaAZHQF9FRJmNBGBoB03oA2gIR0CdThNKAavSdX2UKGgGR0BgCWkk8ifQaAdN6ANoCEdAnVFoD9wWFnV9lChoBkdAYKWCcwxnF2gHTegDaAhHQJ1tLkhib2F1fZQoaAZHQF0oht+CsfdoB03oA2gIR0CdboVsUIszdX2UKGgGR0Bh+rV4HHFQaAdN6ANoCEdAnW/cTviLl3V9lChoBkdAXj/IxQBPsWgHTegDaAhHQJ1zP2+PBBR1fZQoaAZHQGXXhEroW59oB03oA2gIR0CdeQRXfZVXdX2UKGgGR0Bhp2PRzBAOaAdN6ANoCEdAnXzOFtbcGnV9lChoBkdAX+gDp1RtQGgHTegDaAhHQJ2Jq+10DEF1fZQoaAZHQGJ5VB+nZTRoB03oA2gIR0Cdj+0F8ohIdX2UKGgGR0Bk0EGZ/kNnaAdN6ANoCEdAnZByDM/yG3V9lChoBkdAXiNxzaK1omgHTegDaAhHQJ2QympEQXh1fZQoaAZHQGF3tNSIgvFoB03oA2gIR0CdkU6GgzxgdX2UKGgGR0BfVgFTvRZ2aAdN6ANoCEdAnZiWfK6nSHV9lChoBkdAXzcQarFOwmgHTegDaAhHQJ2qpRQ79yd1fZQoaAZHQGPmEbHZK4BoB03oA2gIR0Cdqwskpqh2dX2UKGgGR0Bk3QaWHDaXaAdN6ANoCEdAnauXYg7o0XV9lChoBkdAZHYUSqU/wGgHTegDaAhHQJ2t5US7GvR1fZQoaAZHQGDmtedCmdloB03oA2gIR0CdzCrHEMspdX2UKGgGR0BkIQXsPatcaAdN6ANoCEdAnc1eokzGgnV9lChoBkdAXtR+KCQLeGgHTegDaAhHQJ3OqVyFPBV1fZQoaAZHQGL9huwX669oB03oA2gIR0Cd0ewe/5+IdX2UKGgGR0BI7z+m3vx6aAdNVwFoCEdAndajSPU8WHV9lChoBkdAYII5J9RaYGgHTegDaAhHQJ3Xk4S6DoR1fZQoaAZHQGCgdlNDc/NoB03oA2gIR0Cd2x4wAU+LdX2UKGgGR0Bhdu/JvHcUaAdN6ANoCEdAnePyRr8BMnV9lChoBkdAYhmzfrKNhmgHTegDaAhHQJ3raluWKMx1fZQoaAZHQGN62/BWPtFoB03oA2gIR0Cd7DEP1+RYdX2UKGgGR0BgPGMZP2wnaAdN6ANoCEdAneyzgIhQnHV9lChoBkdAYvsDyOJcgWgHTegDaAhHQJ3taLS/j811fZQoaAZHQGCdV4HHFP1oB03oA2gIR0Cd9YaDPGADdX2UKGgGR0BwjoQ5FPSEaAdNPANoCEdAnf03MEA5rHV9lChoBkdAY7jltj0+T2gHTegDaAhHQJ4GOQMhHLB1fZQoaAZHQGKTrCN0eU9oB03oA2gIR0CeBtSDAaegdX2UKGgGR0ByAF2hZha1aAdNBQJoCEdAnhB45PuXu3VlLg=="
49
+ },
50
+ "ep_success_buffer": {
51
+ ":type:": "<class 'collections.deque'>",
52
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
53
+ },
54
+ "_n_updates": 248,
55
+ "observation_space": {
56
+ ":type:": "<class 'gymnasium.spaces.box.Box'>",
57
+ ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
58
+ "dtype": "float32",
59
+ "bounded_below": "[ True True True True True True True True]",
60
+ "bounded_above": "[ True True True True True True True True]",
61
+ "_shape": [
62
+ 8
63
+ ],
64
+ "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
65
+ "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
66
+ "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
67
+ "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
68
+ "_np_random": null
69
+ },
70
+ "action_space": {
71
+ ":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
72
+ ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=",
73
+ "n": "4",
74
+ "start": "0",
75
+ "_shape": [],
76
+ "dtype": "int64",
77
+ "_np_random": null
78
+ },
79
+ "n_envs": 16,
80
+ "n_steps": 1024,
81
+ "gamma": 0.999,
82
+ "gae_lambda": 0.98,
83
+ "ent_coef": 0.01,
84
+ "vf_coef": 0.5,
85
+ "max_grad_norm": 0.5,
86
+ "batch_size": 64,
87
+ "n_epochs": 4,
88
+ "clip_range": {
89
+ ":type:": "<class 'function'>",
90
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
91
+ },
92
+ "clip_range_vf": null,
93
+ "normalize_advantage": true,
94
+ "target_kl": null,
95
+ "lr_schedule": {
96
+ ":type:": "<class 'function'>",
97
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
98
+ }
99
+ }
ppo-LunarLander-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a42865c1815ddce52586d8399dd273a0db3359960e8e9be7ec71283d3571e54f
3
+ size 88362
ppo-LunarLander-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4f45510d055925e300d830310cd0d3a1224ddfa83d108f3a43adf65270298f89
3
+ size 43762
ppo-LunarLander-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0c35cea3b2e60fb5e7e162d3592df775cd400e575a31c72f359fb9e654ab00c5
3
+ size 864
ppo-LunarLander-v2/system_info.txt ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ - OS: Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Thu Jun 27 21:05:47 UTC 2024
2
+ - Python: 3.10.12
3
+ - Stable-Baselines3: 2.0.0a5
4
+ - PyTorch: 2.4.0+cu121
5
+ - GPU Enabled: True
6
+ - Numpy: 1.26.4
7
+ - Cloudpickle: 2.2.1
8
+ - Gymnasium: 0.28.1
9
+ - OpenAI Gym: 0.25.2
replay.mp4 ADDED
Binary file (197 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 217.99771660000002, "std_reward": 86.87228888239144, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2024-09-17T14:45:29.359171"}