hanad commited on
Commit
665d87a
·
verified ·
1 Parent(s): ab5c329

End of training

Browse files
README.md ADDED
@@ -0,0 +1,82 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ base_model: google/vit-base-patch16-224-in21k
4
+ tags:
5
+ - generated_from_trainer
6
+ datasets:
7
+ - imagefolder
8
+ metrics:
9
+ - accuracy
10
+ model-index:
11
+ - name: Firearms_detection
12
+ results:
13
+ - task:
14
+ name: Image Classification
15
+ type: image-classification
16
+ dataset:
17
+ name: imagefolder
18
+ type: imagefolder
19
+ config: default
20
+ split: validation
21
+ args: default
22
+ metrics:
23
+ - name: Accuracy
24
+ type: accuracy
25
+ value: 0.9787685774946921
26
+ ---
27
+
28
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
29
+ should probably proofread and complete it, then remove this comment. -->
30
+
31
+ # Firearms_detection
32
+
33
+ This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the imagefolder dataset.
34
+ It achieves the following results on the evaluation set:
35
+ - Loss: 0.0580
36
+ - Accuracy: 0.9788
37
+
38
+ ## Model description
39
+
40
+ More information needed
41
+
42
+ ## Intended uses & limitations
43
+
44
+ More information needed
45
+
46
+ ## Training and evaluation data
47
+
48
+ More information needed
49
+
50
+ ## Training procedure
51
+
52
+ ### Training hyperparameters
53
+
54
+ The following hyperparameters were used during training:
55
+ - learning_rate: 5e-05
56
+ - train_batch_size: 16
57
+ - eval_batch_size: 16
58
+ - seed: 42
59
+ - gradient_accumulation_steps: 4
60
+ - total_train_batch_size: 64
61
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
62
+ - lr_scheduler_type: linear
63
+ - lr_scheduler_warmup_ratio: 0.1
64
+ - num_epochs: 5
65
+
66
+ ### Training results
67
+
68
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy |
69
+ |:-------------:|:------:|:----:|:---------------:|:--------:|
70
+ | 0.1916 | 0.9903 | 51 | 0.1668 | 0.9566 |
71
+ | 0.0711 | 2.0 | 103 | 0.0857 | 0.9757 |
72
+ | 0.053 | 2.9903 | 154 | 0.0803 | 0.9757 |
73
+ | 0.0368 | 4.0 | 206 | 0.0622 | 0.9820 |
74
+ | 0.0524 | 4.9515 | 255 | 0.0597 | 0.9799 |
75
+
76
+
77
+ ### Framework versions
78
+
79
+ - Transformers 4.42.4
80
+ - Pytorch 2.3.1+cu121
81
+ - Datasets 2.20.0
82
+ - Tokenizers 0.19.1
model.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:4a7b802b742b6a920c07716a87e4c5629cb5347aabb96ef658a02ed70bdf1ffa
3
  size 343223968
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ce3cbe6e2a36b6eb8df0f5212cf3fc357cded7a34fb32e41e1b9ed9371e3b6d6
3
  size 343223968
runs/Jul29_07-43-44_99578440f98c/events.out.tfevents.1722240771.99578440f98c.459.1 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:244e5730666a045707d329182cd41514e8290c6d17abab9001cb00f195ff23d0
3
+ size 734